Supplementary Information for “Promising photovoltaic and solid-state-lighting materials: two-dimensional Ruddlesden-Popper type lead-free halide double perovskites

$Cs_{n+1}In_{n/2}Sb_{n/2}I_{3n+1}$ (n=3) and

$Cs_{n+1}In_{n/2}Sb_{n/2}Cl_{3n+1}/Cs_{m+1}Cu_{m/2}Bi_{m/2}Cl_{3m+1}$ (n=3, m=1)

Meng Wu, a Jun-jie Shi, a Min Zhang, b Yu-lang Cen, a Wen-hui Guo a and Yao-hui Zhu c

a State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
b College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
c Physics Department, Beijing Technology and Business University, Beijing 100048, China

*E-mail: jjshi@pku.edu.cn
Table S1 Values of the parameter CUT (in atomic units) and l together with the detailed half-ionized orbitals for M^+, M^{3+} and X^- in our GGA-1/2 calculations are listed. Our CUT values for X^- are slightly smaller than those of ref. a-c (3.12, 3.34 and 3.76 for Cl^-, Br^- and I^-). This is because the anion CUT value usually has a small dependence on the chemical environment, as pointed out by Ferreira et al.d

<table>
<thead>
<tr>
<th>Atom</th>
<th>CUT</th>
<th>l</th>
<th>Half-ionized orbital</th>
<th>Atom</th>
<th>CUT</th>
<th>l</th>
<th>Half-ionized orbital</th>
</tr>
</thead>
<tbody>
<tr>
<td>In^+</td>
<td>2.6</td>
<td>100</td>
<td>d</td>
<td>Sb^{3+}</td>
<td>2.8</td>
<td>90</td>
<td>d</td>
</tr>
<tr>
<td>Cu^+</td>
<td>2.8</td>
<td>100</td>
<td>d</td>
<td>Cl^-</td>
<td>2.9</td>
<td>100</td>
<td>p</td>
</tr>
<tr>
<td>Ag^+</td>
<td>3.1</td>
<td>100</td>
<td>d</td>
<td>Br^-</td>
<td>3.1</td>
<td>100</td>
<td>p</td>
</tr>
<tr>
<td>Au^+</td>
<td>3.0</td>
<td>100</td>
<td>d</td>
<td>I^-</td>
<td>3.4</td>
<td>100</td>
<td>p</td>
</tr>
<tr>
<td>Bi^{3+}</td>
<td>2.7</td>
<td>90</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S2 The dependence of the GGA-1/2 bandgap on the half-ionized orbitals of metal atoms in Cs$_2$In$_{1/2}$Sb$_{1/2}$I$_4$ and Cs$_2$Cu$_{1/2}$Bi$_{1/2}$Cl$_4$, in which the half ionization of the p-orbital in I and Cl atoms is included. Compared with the accurate GW bandgap, we can easily find that the correction of d orbital for both M$^+$ and M$^{3+}$ is necessary.

<table>
<thead>
<tr>
<th>Material</th>
<th>Half-ionized orbital</th>
<th>Bandgap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs2In${1/2}$Sb$_{1/2}$I$_4$</td>
<td>In: \times Sb: \times</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>In: p Sb: \times</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>In: d Sb: \times</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>In: d Sb: p</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>In: d Sb: d</td>
<td>1.55, 1.55(GW)</td>
</tr>
<tr>
<td>Cs2Cu${1/2}$Bi$_{1/2}$Cl$_4$</td>
<td>Cu: \times Bi: \times</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>Cu: p Bi: \times</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>Cu: d Bi: \times</td>
<td>3.58</td>
</tr>
<tr>
<td></td>
<td>Cu: d Bi: p</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>Cu: d Bi: d</td>
<td>3.82, 3.82(GW)</td>
</tr>
</tbody>
</table>
Table S3: Fully optimized lattice parameter a (in unit of Å) in lead-free $n=1$ halide Cs$_2$M$^{+1/2}$M$^{3+1/2}$X$_4$ double perovskites. Some previous experimental results in bulk phase are also given.

<table>
<thead>
<tr>
<th>Cs$_2$M$^{+1/2}$M$^{3+1/2}$X$_4$</th>
<th>X</th>
<th>a</th>
<th>Cs$_2$M$^{+1/2}$M$^{3+1/2}$X$_4$</th>
<th>X</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs2In${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>11.22</td>
<td>Cs2Cu${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>11.73</td>
<td></td>
<td>Br</td>
<td>11.50</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>12.32</td>
<td></td>
<td>I</td>
<td>12.36</td>
</tr>
<tr>
<td>Cs2In${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>11.10</td>
<td>Cs2Cu${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>10.89</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>11.60</td>
<td></td>
<td>Br</td>
<td>11.37</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>12.28</td>
<td></td>
<td>I</td>
<td>12.34</td>
</tr>
<tr>
<td>Cs2Ag${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td></td>
<td>Cs2Au${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>11.51</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td></td>
<td></td>
<td>Br</td>
<td>11.95</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>12.36</td>
<td></td>
<td>I</td>
<td>12.64</td>
</tr>
<tr>
<td>Cs2Ag${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>10.87</td>
<td>Cs2Au${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>11.39</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>11.41</td>
<td></td>
<td>Br</td>
<td>11.82</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>12.24</td>
<td></td>
<td>I</td>
<td>12.42</td>
</tr>
</tbody>
</table>

Figure S1 Energy band structures of $n=1$ lead-free halide double perovskites with direct bandgap (a) Cs$_2$In$_{1/2}$Bi$_{1/2}$I$_4$, (b) Cs$_2$Cu$_{1/2}$Sb$_{1/2}$I$_4$ and (c) Cs$_2$Cu$_{1/2}$Bi$_{1/2}$I$_4$, and indirect bandgap (d) Cs$_2$Ag$_{1/2}$Bi$_{1/2}$I$_4$, (e) Cs$_2$Au$_{1/2}$Sb$_{1/2}$I$_4$ and (f) Cs$_2$Au$_{1/2}$Bi$_{1/2}$I$_4$. Here, the band structures are derived from the GGA-PBE calculations, in which the underestimated bandgaps are modified according to GGA-1/2 calculations.
Figure S2 PDOSs of $n=1$ lead-free halide double perovskites with direct bandgap (a) Cs$_2$In$_{1/2}$Bi$_{1/2}$I$_4$, (b) Cs$_2$Cu$_{1/2}$Sb$_{1/2}$I$_4$ and (c) Cs$_2$Cu$_{1/2}$Bi$_{1/2}$I$_4$, and indirect bandgap (d) Cs$_2$Ag$_{1/2}$Bi$_{1/2}$I$_4$, (e) Cs$_2$Au$_{1/2}$Sb$_{1/2}$I$_4$ and (f) Cs$_2$Au$_{1/2}$Bi$_{1/2}$I$_4$.
Figure S3 The 2D double perovskite crystal structures of (a) $n=2$ Cs$_3$InSbI$_7$ and (b) $n=3$ Cs$_4$In$_{12}$Sb$_{32}$I$_{10}$ with the vertical distance of $h=6.92$ and 13.24 Å, respectively. Here, the stacking order of layered double perovskites, composed by the alternative M^+X (pink) and $M^{3+}X$ (blue) octahedrons, is similar to their bulk counterparts.

Figure S4 Schematic illustration of the crystal structure of 2D lead-free halide double perovskite heterostructure. The different perovskite layers in the heterostructure are directly stacked together with a shift of $b/2$ along the b-axis just as the bulk RP-type perovskite. A suitable strain exists to match the lattice constants of different layers. The d represents the interlayer distance between two different layers in the heterostructure.
Table S4 The interlayer distance d (Å) and lattice mismatch of all considered 2D RP-type lead-free halide double perovskite heterostructures

<table>
<thead>
<tr>
<th>Material</th>
<th>Layer thickness</th>
<th>d</th>
<th>Lattice mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsInSbCl/CsCuBiCl</td>
<td>$n=1/m=1$</td>
<td>5.51</td>
<td>0.45%</td>
</tr>
<tr>
<td></td>
<td>$n=2/m=1$</td>
<td>5.54</td>
<td>0.67%</td>
</tr>
<tr>
<td></td>
<td>$n=1/m=2$</td>
<td>5.56</td>
<td>0.51%</td>
</tr>
<tr>
<td></td>
<td>$n=2/m=2$</td>
<td>5.65</td>
<td>0.53%</td>
</tr>
<tr>
<td></td>
<td>$n=3/m=1$</td>
<td>5.62</td>
<td>0.72%</td>
</tr>
<tr>
<td>CsInBiCl/CsCuBiCl</td>
<td>$n=1/m=1$</td>
<td>5.58</td>
<td>0.98%</td>
</tr>
<tr>
<td>CsInSbCl/CsAgBiCl</td>
<td>$n=1/m=1$</td>
<td>5.59</td>
<td>0.54%</td>
</tr>
<tr>
<td>CsInBiCl/CsCuSbCl</td>
<td>$n=1/m=1$</td>
<td>5.57</td>
<td>1.47%</td>
</tr>
<tr>
<td>CsAgSbBr/CsCuSbCl</td>
<td>$n=1/m=1$</td>
<td>5.64</td>
<td>2.27%</td>
</tr>
<tr>
<td>CsAgSbBr/CsCuSbBr</td>
<td>$n=1/m=1$</td>
<td>5.78</td>
<td>0.17%</td>
</tr>
<tr>
<td>CsAgSbI/CsCuSbI</td>
<td>$n=1/m=1$</td>
<td>5.69</td>
<td>0.41%</td>
</tr>
</tbody>
</table>
Figure S5 The weighted energy band structures of $n=1/m=1$ lead-free halide double perovskite heterostructures with type-II band alignment can be classified into two types, *i.e.*, direct bandgap (a) $\text{Cs}_2\text{In}_{1/2}\text{Bi}_{1/2}\text{Cl}_4/\text{Cs}_2\text{Cu}_{1/2}\text{Bi}_{1/2}\text{Cl}_4$, (b) $\text{Cs}_2\text{In}_{1/2}\text{Sb}_{1/2}\text{Cl}_4/\text{Cs}_2\text{Ag}_{1/2}\text{Bi}_{1/2}\text{Cl}_4$, and (c) $\text{Cs}_2\text{In}_{1/2}\text{Bi}_{1/2}\text{Cl}_4/\text{Cs}_2\text{Cu}_{1/2}\text{Sb}_{1/2}\text{Cl}_4$ and indirect bandgap (d) $\text{Cs}_2\text{Ag}_{1/2}\text{Sb}_{1/2}\text{Br}_4/\text{Cs}_2\text{Cu}_{1/2}\text{Sb}_{1/2}\text{Cl}_4$, (e) $\text{Cs}_2\text{Ag}_{1/2}\text{Sb}_{1/2}\text{Br}_4/\text{Cs}_2\text{Cu}_{1/2}\text{Sb}_{1/2}\text{Br}_4$, and (f) $\text{Cs}_2\text{Ag}_{1/2}\text{Sb}_{1/2}\text{I}_4/\text{Cs}_2\text{Cu}_{1/2}\text{Sb}_{1/2}\text{I}_4$. Here, the band structures are derived from the GGA-PBE calculations, in which the underestimated bandgaps are modified according to GGA-1/2 calculations.

Figure S6 The calculated imaginary parts ε_2 of dielectric function for freestanding $n=1$ (a) $\text{Cs}_2\text{In}_{1/2}\text{Sb}_{1/2}\text{Cl}_4$ and (b) $\text{Cs}_2\text{Cu}_{1/2}\text{Bi}_{1/2}\text{Cl}_4$.
Table S5 The carrier effective mass m^* (m_0) and the predicted carrier mobility μ (cm2V$^{-1}$s$^{-1}$) in 2D lead-free $n=1$ halide double perovskite Cs$_2$M+ 1/2M3+ 1/2X 4 and their $n=1/m=1$ heterostructures

<table>
<thead>
<tr>
<th>Material</th>
<th>X</th>
<th>m^*_h</th>
<th>m^*_e</th>
<th>μ_h</th>
<th>μ_e</th>
<th>Material</th>
<th>X</th>
<th>m^*_h</th>
<th>m^*_e</th>
<th>μ_h</th>
<th>μ_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPbI$_3$</td>
<td>I</td>
<td>0.30</td>
<td>1.14</td>
<td>0.24</td>
<td></td>
<td>MASnI$_3$</td>
<td>I</td>
<td>0.22</td>
<td>1.10</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Cs2In${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>0.52</td>
<td>1.09</td>
<td>0.40</td>
<td>0.25</td>
<td>Cs2Cu${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>0.85</td>
<td>0.90</td>
<td>0.26</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>0.42</td>
<td>0.94</td>
<td>254</td>
<td>145</td>
<td></td>
<td>Br</td>
<td>0.81</td>
<td>0.88</td>
<td>0.76</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>0.21</td>
<td>0.64</td>
<td>590</td>
<td>145</td>
<td></td>
<td>I</td>
<td>0.75</td>
<td>0.84</td>
<td>0.110</td>
<td>0.96</td>
</tr>
<tr>
<td>Cs2In${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>0.45</td>
<td>1.08</td>
<td>86</td>
<td>72</td>
<td>Cs2Cu${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>0.80</td>
<td>0.84</td>
<td>150</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>0.33</td>
<td>0.93</td>
<td>321</td>
<td>198</td>
<td></td>
<td>Br</td>
<td>0.74</td>
<td>0.82</td>
<td>230</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>0.18</td>
<td>0.70</td>
<td>655</td>
<td>309</td>
<td></td>
<td>I</td>
<td>0.62</td>
<td>0.80</td>
<td>311</td>
<td>196</td>
</tr>
<tr>
<td>Cs2Ag${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>0.85</td>
<td>1.02</td>
<td>30</td>
<td>11</td>
<td>Cs2Au${1/2}$Bi$_{1/2}$</td>
<td>Cl</td>
<td>0.96</td>
<td>1.05</td>
<td>40</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>0.74</td>
<td>0.98</td>
<td>101</td>
<td>50</td>
<td></td>
<td>Br</td>
<td>0.85</td>
<td>0.94</td>
<td>90</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>0.66</td>
<td>0.93</td>
<td>210</td>
<td>121</td>
<td></td>
<td>I</td>
<td>0.76</td>
<td>0.86</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>Cs2Ag${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>0.83</td>
<td>1.06</td>
<td>50</td>
<td>30</td>
<td>Cs2Au${1/2}$Sb$_{1/2}$</td>
<td>Cl</td>
<td>0.90</td>
<td>1.02</td>
<td>92</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Br</td>
<td>0.71</td>
<td>1.02</td>
<td>111</td>
<td>41</td>
<td></td>
<td>Br</td>
<td>0.81</td>
<td>0.89</td>
<td>160</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>0.60</td>
<td>0.97</td>
<td>200</td>
<td>107</td>
<td></td>
<td>I</td>
<td>0.75</td>
<td>0.81</td>
<td>234</td>
<td>160</td>
</tr>
<tr>
<td>Cs2In${1/2}$Sb$_{1/2}$Cl4/Cs2Cu${1/2}$Bi${1/2}$Cl$_4$</td>
<td>0.80</td>
<td>0.87</td>
<td>70</td>
<td>165</td>
<td>Cs2Ag${1/2}$Sb$_{1/2}$Br4/Cs2Cu${1/2}$Sb${1/2}$Cl$_4$</td>
<td>0.76</td>
<td>0.72</td>
<td>330</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs2In${1/2}$Bi$_{1/2}$Cl4/Cs2Cu${1/2}$Bi${1/2}$Cl$_4$</td>
<td>0.81</td>
<td>0.90</td>
<td>50</td>
<td>65</td>
<td>Cs2Ag${1/2}$Sb$_{1/2}$Br4/Cs2Cu${1/2}$Sb${1/2}$Br$_4$</td>
<td>0.74</td>
<td>0.81</td>
<td>395</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs2In${1/2}$Sb$_{1/2}$Cl4/Cs2Ag${1/2}$Bi${1/2}$Cl$_4$</td>
<td>0.85</td>
<td>0.42</td>
<td>50</td>
<td>122</td>
<td>Cs2Ag${1/2}$Sb$_{1/2}$I4/Cs2Cu${1/2}$Sb${1/2}$I$_4$</td>
<td>0.56</td>
<td>0.89</td>
<td>598</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs2In${1/2}$Bi$_{1/2}$Cl4/Cs2Cu${1/2}$Sb${1/2}$Cl$_4$</td>
<td>0.80</td>
<td>0.42</td>
<td>74</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>