A colorimetric/SERS dual-mode sensing for detection of mercury (II) based on rhodanine stabilized gold nanobipyramids

Ying Qi, Jing Zhao, Guo-jun Weng, Jian-jun Li, Xin Li, Jian Zhu*, Jun-wu Zhao*

The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China

* Corresponding author

Telephone: 86-29-82664224

Fax numbers: 86-29-82664224

Email: nanoptzhao@163.com (Jun-Wu Zhao)
nanoptzj@163.com (Jian Zhu)

Address: School of Life Science and Technology,
Xi’an Jiaotong University,
Xi’an, 710049,
Peoples Republic of China
Figure S1. The effect of the concentration of rhodanine on the normalized absorption spectra of rhodanine stabilized Au NBs after addition of Hg$^{2+}$. pH=7.0; C$_{Hg^{2+}}$, 5.0×10$^{-5}$ M.
Figure S2. (a) The effect of the pH on the normalized absorption spectra of rhodamine stabilized Au NBs after addition of Hg$^{2+}$; (b) TEM images of the rhodamine-stabilized Au NBs under the high acidic condition (pH=3.09). $C_{\text{rhodanine}}$, 2.0×10^{-3} M; $C_{\text{Hg}^{2+}}$, 5.0×10^{-5} M.
Figure S3. The effect of the reaction time on the normalized absorption spectra of rhodanine stabilized Au NBs after addition of Hg$^{2+}$. pH=7.0; $C_{\text{rhodanine}}$, 2.0×10^{-3} M; $C_{\text{Hg}^{2+}}$, 5.0×10^{-5} M.