- Supplementary Information -

Liquid thin film dewetting-driven micropatterning of reduced graphene oxide electrodes for high performance OFETs

Sung Min Lee¹, Seung Keun Song¹, Seongwon Yoon², Dae Sung Chung²* and Suk Tai Chang¹*

¹School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea

²Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea

*E-mail: stchang@cau.ac.kr, dchung@dgist.ac.kr
Figure S1. Contact angle (θ) of 6.65 mg/mL GO solution on (a) ODTS-treated substrate and (b) UV-O$_3$ treated substrate.

Figure S2. Relative time scale of dewetting and drying times ($t_{\text{dewet}}/t_{\text{dry}}$) on hydrophilic and ODTS-treated regions as a function of the liquid thin film thickness estimated by equation (1).
Figure S3. (a) I-V characteristic plot and (b) corresponding resistance profile of the rGO line patterns prepared with different deposition velocities in Figure 3b.