Supporting Information

Preparation of V$_2$O$_5$ dots decorated WO$_3$ nanorod arrays for high performance multi-color electrochromic devices

Kai Tang†, Yong Zhang†,⊥*, Yingdi Shi†, Jiewu Cui†,⊥, Xia Shu†,⊥, Yan Wang†,⊥, Jiaqin Liua, Jiaheng Wanga, Hark Hoe Tanb and Yucheng Wu†,⊥,∗

†School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
$⊥$Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China

* To whom correspondence should be addressed.

†School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
$⊥$Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009, China

Email: zhangyong.mse@hfut.edu.cn, ycwu@hfut.edu.cn
Figure S1. Different magnification SEM plan-view images of WO$_3$/2cir-V$_2$O$_5$ hybrid film.

Figure S2. Different magnification SEM plan-view images of WO$_3$/3cir-V$_2$O$_5$ hybrid film.
Figure S3. Different magnification SEM plan-view images of WO$_3$/4cir-V$_2$O$_5$ hybrid film.

Figure S4. CA and in situ transmittance curves for WO$_3$/2cir-V$_2$O$_5$ hybrid film, measured at 776 nm with voltage interval between -1.0 V (30 s) and 1.5 V (30 s).