Superior discharged energy density and efficiency in polymer nanocomposites induced by linear dielectric core-shell nanofibers

Zhongbin Pan,abc Lingmin Yao,b Jinjun Liu,*a Xiaoyan Liu,b Feipeng Pi,b Jianwen Chen,d Bo Shenc and Jiwei Zhai*c

aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
bSchool of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
cSchool of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
dSchool of Electronic and Information Engineering, Foshan University, Foshan, 528000, China.

*E-mail: panzhongbin@163.com (Zhongbin Pan), apzhai@tongji.edu.cn (Jiwei Zhai), liujinjun1@nbu.edu.cn (Jinjun Liu)
Figure S1 Three-dimensional models of the simulation system for 5 vol.% ST NFs/PVDF and 5 vol.% ST@AO NFs/PVDF composite films.
Figure S2 Cross-section images (X-directions) distribution of leakage current density, electric potential, and electric field strength simulated for the 5 vol% ST NFs/PVDF composite films (a) and 5 vol% ST@AO NFs/PVDF composite films (b).
Figure S3 Cross-section images (Y-directions) distribution of leakage current density, electric potential, and electric field strength simulated for the 5 vol% ST NFs/PVDF composite films (a) and 5 vol% ST@AO NFs/PVDF composite films (b).
Figure S4 Cross-section images (Z-directions) distribution of leakage current density, electric potential, and electric field strength simulated for the 5 vol% ST NFs/PVDF composite films (a) and 5 vol% ST@AO NFs/PVDF composite films (b).
Supporting Information 5

Figure S5 D-E curves of 5 vol% ST NFs/PVDF composite films and 5 vol% ST@AO NFs/PVDF composite films.
Supporting Information 6

Figure S6 D-E curves of pure PVDF and ST@AO NFs/PVDF composite films with different contents fillers.