Supporting information for

Concentrated Solar Irradiation Protocols for The Efficient Synthesis of Tri-color Emissive Carbon Dots and Photophyiscal Studies

Dong Lu a,Yiping Tang b, Jinwei Gao c, Qianming Wang a

a Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, P. R. China

b College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China

c Guangdong Provincial Engineering Technology Research Center For Transparent Conductive Materials, South China Normal University, Guangzhou 510006, China

* To whom the correspondence should be addressed. E-mail: qmwang@scnu.edu.cn
Tel: 86-20-39310258; Fax: 86-20-39310187
Figure S1 Digital photo of blue CDs under sunlight radiation.

Figure S2 Experimental set-up for concentration solar radiation reaction.
Figure S3 XRD patterns for the tricolor CDs.

Figure S4 XPS survey (a) and deconvoluted high-resolution XPS spectra of green carbon dots for C1s (b), N1s (c) and O1s (d).
Figure S5 XPS survey (a) and deconvoluted high-resolution XPS spectra of red carbon dots for C1s (b), N1s (c) and O1s (d).

Figure S6 Emission spectra of raw materials and tricolor CDs.
Figure S7 Emission intensities of tricolor CDs at different time duration.
Figure S8 a), b) Photostability of the white-emissive material under consecutive excitation at 365 nm for one hour, c), d) Time dependence of emission intensities of the white-emissive material during seven days.