Supplementary Information

Cross-plane thermoelectric Seebeck coefficients in nanoscale Al$_2$O$_3$/ZnO superlattice films

Yo-Seop Yoona,†, Won-Yong Leea,†, No-Won Parka, Gil-Sung Kima, Rafael Ramosb,c, Takashi Kikkawab,c, Eiji Saitohb,c,d, Sang-Mo Kooe, Jin-Seong Parkf, and Sang-Kwon Leea*

aDepartment of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
bInstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan
cWPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
dDepartment of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
eDepartment of Electronic Materials Engineering, Kwangwoon University, Seoul 10897, Republic of Korea
fDivision of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea

*Address correspondence to sangkwonlee@cau.ac.kr

†These authors contributed equally to this work
Figure S1 Un- and compensated cross-plane Seebeck coefficients of the films. Un-compensated and compensated cross-plane Seebeck coefficients of the 6-cycled AO/ZnO superlattice films as a function of the temperature difference from 1 to 5 K. All measurements were performed in a vacuum chamber at room temperature. The thickness of the samples was 100 nm. The measured Seebeck coefficients of 100 nm-thick 6-cycled AO/ZnO superlattice film was determined to be ~ 11.4 – 11.8 μV/K with a temperature difference which ranged from 1 to 5 K.
Figure S2 Temperature dependent cross-plane Seebeck coefficient of the films. Cross-plane Seebeck coefficient of 6-cycled AO/ZnO superlattice films as a function of temperature, ranging from 100 to 300 K. All measurements were performed in a vacuum chamber. The thickness of the samples was 100 nm.