Supporting Information

Smart Strain Sensing Organic-Inorganic Hybrid Hydrogels with Nano Barrium Ferrite as Cross-linker

Hongbo Gu,1,* Hongyuan Zhang,1 Chao Ma,1 Hongling Sun,2 Chuntai Liu,2 Kun Dai,2 Jiaoxia Zhang,3,4 Renbo Wei,4,6,* Tao Ding,5,* and Zhanhu Guo4,*

1Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China

2Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China

3School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China

4Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee. 37966, USA

5Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China

6College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China

Corresponding Authors:
E-mail: hongbogu2014@tongji.edu.cn
zguo10@utk.edu

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019
S1. SEM Images of Barium Ferrite Nanoparticles

Fig. S1 SEM images of barium ferrite nanoparticles.

S2. Digital Photo of BaFe$_{12}$O$_{19}$/PAA Hydrogel with Thickness of 1 mm

Fig. S2 Digital photo of BaFe$_{12}$O$_{19}$/PAA hydrogel with thickness of 1 mm, the transparent hydrogel illustrates the uniform dispersion of BaFe$_{12}$O$_{19}$ within PAA matrix.
S3. TGA curves of BaFe$_{12}$O$_{19}$/PAA Hydrogels

Fig. S3 TGA curves of MBA/PAA hydrogel and BaFe$_{12}$O$_{19}$/PAA hydrogels with different BaFe$_{12}$O$_{19}$ nanoparticle loadings.

S4. Strain Sensing of BaFe$_{12}$O$_{19}$/PAA Hydrogel at Cycle of 1-10.

Fig. S4 Resistance variation of BaFe$_{12}$O$_{19}$/PAA hydrogel with a BaFe$_{12}$O$_{19}$ nanoparticle loading of 0.3 wt% under cyclic compression with a strain up to 40% at cycles of 1-10.
S5. Measurement set-up for BaFe$_{12}$O$_{19}$/PAA Hydrogel.

Fig. S5 Electrochemical impedance spectroscopy (EIS) measurement set-up of BaFe$_{12}$O$_{19}$/PAA hydrogel.

Fig. S6 Nyquist plots of MBA/PAA hydrogel and BaFe$_{12}$O$_{19}$/PAA hydrogel with BaFe$_{12}$O$_{19}$ nanoparticle loading of 0.3 wt%.

S6. Schematic of Strain Sensing Measurement

Figure S7 Schematic of the strain sensing measurement.