Supporting Information for

Turn-off/on fluorescent sensors for Cu\(^{2+}\) and ATP in aqueous solution based on tetraphenylethylene derivative

Lai-Yao Geng,\(^a\) Yang Zhao,\(^a\) Edward Kamya,\(^a\) Jin-Tang Guo,\(^a\) Bin Sun,\(^b\) Ya-Kai Feng,\(^a\) Mei-Fang Zhu,\(^b\) Xiang-Kui Ren,\(^*,a\)

\(^a\) School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China

\(^b\) State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

*Corresponding Author: renxiangkui@tju.edu.cn
Fig. S1. UV/Vis spectra of TPE-COOH in different H$_2$O/EtOH mixtures from 0% to 90%. [TPE-COOH] = 1.0×10$^{-5}$ mol/L.

Fig. S2. Linear curve between maximum emission intensity of TPE-COOH and the Cu$^{2+}$ concentration in HEPES buffer.
Fig. S3. Job’s plot for determining the binding ratio of TPE-COOH to Cu$^{2+}$ in HEPES buffer (10 mM, pH 7.4). The total concentration of TPE-COOH and Cu$^{2+}$ ion is 20 µM.

Fig. S4. Photos of TPE-COOH upon addition of various metal ions in HEPES buffer. [TPE-COOH] = 1.0×10$^{-5}$ mol/L; [metal] = 2.0×10$^{-5}$ mol/L; λ_{exc} = 365 nm.
Fig. S5. UV/Vis spectra of TPE-COOH upon introduction of different amounts of Cu$^{2+}$ in HEPES buffer (10 mM, pH 7.4). [TPE-COOH] = 1.0×10$^{-5}$ mol/L.

Fig. S6. Scanning electron microscope photographs of aggregates: (a) TPE-COOH; (b) TPE-COOH/Cu$^{2+}$ and (c) TPE-COOH/Cu$^{2+}$-ATP.
Fig. S7. Job’s plot for determining the binding ratio of TPE-COOH/Cu$^{2+}$ to ATP in HEPES buffer (10 mM, pH 7.4). The total concentration of TPE-COOH/Cu$^{2+}$ and ATP is 20 µM.

Fig. S8. UV/Vis spectra of TPE-COOH/Cu$^{2+}$ upon introduction of different amounts of ATP in HEPES buffer (10 mM, pH 7.4). [TPE-COOH] = 1.0×10^{-5} mol/L; [Cu$^{2+}$] = 2.0×10^{-5} mol/L.
Fig. S9. Photos of TPE-COOH/Cu$^{2+}$ upon addition of various ions in HEPES buffer. [TPE-COOH/Cu$^{2+}$] = 1.0×10$^{-5}$ mol/L; [anion] = 2.0×10$^{-5}$ mol/L; $\lambda_{\text{exc}} = 365$ nm.