Supporting Information

Interfacial Engineering for Highly Efficient Inorganic Perovskite Light-Emitting Diodes

Qing-Wei Liu, Shuai Yuan, Shuang-Qiao Sun, Wei Luo, Yi-Jie Zhang, Liang-Sheng Liao,* and Man-Keung Fung*

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.

*E-mail: mkfung@suda.edu.cn (Man-Keung Fung)

Table of Contents

Figure S1. Molecular structure of betaine.

Figure S2. Schematic diagram of energy alignment of devices.

Figure S3. J-V curve of the device.

Figure S4. Histogram of peak EQEs measured from 32 devices.

Figure S5. Distribution of emitting intensity according to various angle.
Figure S1. Molecular structure of betaine.

Figure S2. Schematic diagram of energy alignment based on devices’ structure of ITO/PEDOT:PSS/PVK/Perovskite/TPBi/Liq/Al.
Figure S3. J-V curve of the device discussed in Figure 5(d). This device shows extremely low electric leakage below 10^{-4} mA/cm2.
Figure S4. A histogram of EQEs with an average value of 9.5% for 32 devices.
Figure S5. Distribution of emitting intensity according to various angle. Lambertian emitter and the EL intensity are marked in different colors.