Colorimetric detection of Ba$^{2+}$, Cd$^{2+}$ and Pb$^{2+}$ Based on a Multifunctionalized Au NPs Sensor

Jiaoyan Qiu,ab Zihou Li,a Lijing Miao,a Hongsen Wang,a Yuenan Zhang,a Shasha Wu,a Yujie Zhang,** Xing Li,**ab and Aiguo Wu**

*a Cixi Institute of Biomedical Engineering, Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Zhen-hai District, Ning-bo, Zhejiang 315201, P. R. China.

b School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

*Corresponding Authors

E-mail: zhangyujie@nimte.ac.cn, Tel: +86 574 86685513, Fax: +86 574 86685163

E-mail: lixing@nbu.edu.cn, Tel: +86 574 87600869, Fax: +86 574 87609987

E-mail: aiguo@nimte.ac.cn, Tel: +86 574 86685039, Fax: +86 574 86685163
Table of Content

Fig. S1 The FT-IR spectra of Au NPs, 3-MPA-abc modified Au NPs and 3-MPA-abc…………………………………………………………………………..S-3

Fig. S2 The size dispersion of Au NPs under different conditions…………………..S-4

Fig. S3 Effect of 3-MPA-abc concentration (2, 4, 5, 7.5, 10, 15, and 20 µM) on the detection of Ba$^{2+}$ by the functionalized Au NPs……………………………………… S-5

Fig. S4 The influence of pH values (5, 6, 7, 8, 10, 12, 12.5) on the detection effect of Ba$^{2+}$ by modified Au NPs…………………………………………………………..S-6

Fig. S5 Effect of reaction time on the detection of Ba$^{2+}$ according to the absorption intensity of functionalized Au NPs at 685nm………………………………………………..S-7

Fig. S6 UV-vis absorption spectra of blank groups and functionalized Au NPs solutions containing Ba$^{2+}$ (5µM)……………………………………………………………………..S-8
Fig. S1 The FT-IR spectra of Au NPs, 3-MPA-abc modified Au NPs and 3-MPA-abc.
Fig. S2 The size dispersion of Au NPs under different conditions. (a) Au NPs (control); (b) Au NPs with 10 µM 3-MPA-abc; (c) Au NPs with Ba$^{2+}$/Cd$^{2+}$/Pb$^{2+}$; (d) Au NPs with 3-MPA-abc in the presence of Ba$^{2+}$; (e) Au NPs with 3-MPA-abc in the presence of Cd$^{2+}$; (f) Au NPs with 3-MPA-abc in the presence of Pb$^{2+}$.
Fig. S3 Effect of 3-MPA-abc concentration (2, 4, 5, 7.5, 10, 15, and 20 µM) on the detection of Ba$^{2+}$ by the functionalized Au NPs. (a) Photograph of the colorimetric detection effect (up: control samples, down: samples with Ba$^{2+}$); (b) UV-vis absorption intensity ratio A/A_0 of Au NPs solutions (A represents the absorption intensity ratio of functionalized Au NPs containing Ba$^{2+}$ at 685 nm and 525 nm, A_0 represents the absorption intensity ratio of the blank one).
Fig. S4 The influence of pH values (5, 6, 7, 8, 10, 12, 12.5) on the detection effect of Ba$^{2+}$ by modified Au NPs. (a) Photograph of the detection effect (up: control samples, down: samples with Ba$^{2+}$); (b) UV-vis absorption intensity ratio A/A$_0$ of Au NPs (A represents the absorption intensity ratio of functionalized Au NPs containing Ba$^{2+}$ at 685 nm and 525 nm, A$_0$ represents the absorption intensity ratio of the blank one).
Fig. S5 Effect of reaction time on the detection of Ba$^{2+}$ according to the absorption intensity of functionalized Au NPs at 685nm.
Fig. S6 UV-vis absorption spectra of blank groups and functionalized Au NPs solutions containing Ba$^{2+}$ (5 μM).