Supporting Information

Yolk−shell structured Au@Ag@mSiO₂ as probe for sensing of cysteine enantiomers and Cu²⁺ based on circular dichroism

Jing Wang, Xu Xu, Xiaolin Qiu, Shuaishuai Zhang and Yinxian Peng

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Table of Contents

S1 UV-Vis absorption spectra of the Au@Ag@mSiO₂ and YS-Au@Ag@mSiO₂.

S2 CD spectra of the pure L/D-Cys solutions.

S3 CD spectra of the Au@Ag@mSiO₂-L-Cys and YS-Au@Ag@mSiO₂-L-Cys.

S4 (a) CD spectra of the YS-Au@Ag@mSiO₂ responded to different concentration of D-Cys. D-Cys molecules reached saturated adsorption on the surface Au@Ag when the concentration of L-Cys was ~90 μM. (b) Linear relationship between the CD intensity (258 nm) and concentration of D-Cys.

S5 CD spectra of the YS-Au@Ag@mSiO₂ with different composition of L-Cys.

S6 UV-Vis absorption spectra of the YS-Au@Ag@mSiO₂ responded to different concentration of Cu²⁺ (1, 5, 10, 25, 50, 100 and 250 nM, respectively).

S7 The evolutions of CD spectra of the YS-Au@Ag@mSiO₂ in the presence of various metal ions.
Figure S1 UV-Vis absorption spectra of the Au@Ag@mSiO₂ and YS-Au@Ag@mSiO₂.
Figure S2 CD spectra of the pure L/D-Cys solutions.
Figure S3 CD spectra of the Au@Ag@mSiO$_2$-L-Cys and YS-Au@Ag@mSiO$_2$-L-Cys.
Figure S4 (a) CD spectra of the YS-Au@Ag@mSiO$_2$ responded to different concentration of D-Cys. D-Cys molecules reached saturated adsorption on the surface Au@Ag when the concentration of L-Cys was ~90 μM. (b) Linear relationship between the CD intensity (258 nm) and concentration of D-Cys.
Figure S5 CD spectra of the YS-Au@Ag@mSiO$_2$ with different composition of L-Cys.
Figure S6 UV-Vis absorption spectra of the YS-Au@Ag@mSiO$_2$ responded to different concentration of Cu$^{2+}$ (1, 5, 10, 25, 50, 100 and 250 nM, respectively).
Figure S7 The evolutions of CD spectra of the YS-Au@Ag@mSiO₂ in the presence of various metal ions.