Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in vitro and in vivo imaging and p-nitrophenol detection

Kunhao Qina,b, Dongfang Zhangb, Yafang Dingb, Xiaodan Zhengb, Yingying Xiangc, Jianhao Huab, Qi Zhangb, Xiuling Jib, Bo Lid, Yunlin Weib*

a Post-doctoral Research Station in Geological Resources and Geological Engineering, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650500, China
b Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
c Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650031, China
d Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650500, China
These authors have contributed equally to this work.
* Corresponding author: weiyunlin18@163.com.

\textbf{Fig. S1} (a) The fluorescence intensity of CDs-WT varying with the sample pH value from 2 to 8. (b) Normalized fluorescence intensity of CDs-WT under UV (365 nm) irradiation for 2 h. (c) Normalized fluorescence intensity of CDs-WT in different NaCl concentrations ranging from 0 to 2 M.
Fig. S2 Effect of (a) sample pH value and (b) reaction time on the detection of \(p \)-NP with CDs-WT.

Fig. S3 Hela (a) and U2OS (b) cell viability from MTT assays with different CDs-WT concentration after 24 h incubation.
Fig. S4 Fluorescence quenching efficiency of amino acids (30 μM) and common anions (30 μM) toward CDs-WT.