Supporting Information

A novel stainless steel needle electrode based on porous gold nanomaterials for determination of copper in seawater

Haitao Han, a,b Ying Li, c Dawei Pan,* a,b Chenchen Wang, a Fei Pan, a,b and Xiaoyan Ding a,b

a CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China

b University of Chinese Academy of Sciences, Beijing 100049, P.R. China

c Yantai Environmental Monitoring Center, Yantai 264010, P.R. China

*Corresponding author. Tel.: +86 535 2109155; fax: +86 535 2109155.

E-mail addresses: dwpan@yic.ac.cn (D. Pan).
2 The calculation process of the LOD

The LOD in this manuscript was calculated from $3S_b/k$, where S_b was the standard deviation of blank samples for 10 measurements, k was the slope of calibration curve at low concentration range.

The standard deviation of blank samples (S_b) was calculated as 0.25×10^{-3}, and the calibration curve at low concentration range (4 points, 0.7, 3, 5, 10 nM) was $Ip = 3.13C + 0.03$ (k was 3.13). So the LOD was calculated as $3 \times 0.25 \times 10^{-3} / 3.13 = 0.24 \times 10^{-3}$ μM (0.24 nM).
Fig. S1. The peak current (Ip) obtained for 50 nM Cu$^{2+}$ in acetate buffer (pH 4.5) solution with six P-Au/PDA/ANEs prepared independently (A) and with the same P-Au/PDA/ANE for 20 measurements. (C) Current change (ΔI) recorded with P-Au/PDA/ANE in acetate buffer (pH 4.5) solution in the presence of 50 nM Cu$^{2+}$, 5 µM Mg$^{2+}$, 5 µM Zn$^{2+}$, 5 µM Ni$^{2+}$, 5 µM Co$^{2+}$, 5 µM SO$_4^{2-}$, 5 µM NO$_3^-$, 2.5 µM Cd$^{2+}$, 2.5 µM Fe$^{3+}$, 0.5 µM Bi$^{3+}$, and 0.5 µM Pb$^{2+}$, respectively.