Supplementary Information

Multi-screening of β-lactam antibiotics for β-lactamase resistance by means of a paper-based analytical device with the 4-(2-pyridylazo)resorcinol (PAR)–Hg²⁺ complex

Suji Lee, Min Sik Eom and Min Su Han*

Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

*E-mail: happyhan@gist.ac.kr; Tel: +82-62-715-2848
Stability of PAR–Hg\(^{2+}\) complex in presence of β-lactam antibiotics

Figure S1 UV/Vis spectrum of PAR (20 μM)–Hg\(^{2+}\) (40 μM) complex containing β-lactam antibiotics substrate (100 μM), a) PenG, b) CLOX, c) CAZ in sodium phosphate buffer (pH 7.0, 20 mM).

Detection of β-lactamase resistance of β-lactam antibiotics using PAR–Hg\(^{2+}\) complex

Figure S2 UV/Vis spectrum of cocktail of β-lactam antibiotics (100 μM) and PAR (20 μM)–Hg\(^{2+}\) (40 μM) complex after incubation for 20 min with each different β-lactamase (50 ng/mL).
Characterization of OTS-modified paper

Figure S3 a) Drop of water (1 μL) on OTS-modified paper, b) effect of UV exposure time on contact angles.

Optimization of PAR–Hg$^{2+}$ complex for paper-based colorimetric assay

Figure S4 Plot of intensities of PAR–Hg$^{2+}$ complex spot versus different Hg(NO$_3$)$_2$ concentration with fixed PAR (2 mM).