Supporting Information

A “naked-eye” colorimetric and ratiometric fluorescence probe for trace hydrazine

Cuiyan Wu, Hai Xu, Yaqian Li, Ruihua Xie, Peijuan Li, Xiao Pang, Zile Zhou, Haitao Li and Youyu Zhang*

*Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.

* Corresponding author: Tel: +86-0731-88865515; Fax: +86-0731-88865515; E-mail address: zhangyy@hunnu.edu.cn
Fig. S1 1H NMR spectrum of Probe DH (500 MHz, CDCl$_3$)
Fig. S2 13C NMR spectrum of Probe DH (500 MHz, CDCl$_3$)
Fig. S3 MS spectrum of DH
Fig. S4 ¹H NMR spectrum of DDP (500 MHz, CDCl₃)
Fig. S5 13C NMR spectrum of DDP (500 MHz, CDCl$_3$)
Fig. S6 MS spectrum of probe DH⁺ N₂H₄
Fig. S7 Photographs of probe DH (10 μM) solution in the presence of various concentrations of N₂H₄ (1. 0 μM, 2. 10 μM, 3. 20 μM, 4. 30 μM, 5. 50 μM, 6. 70 μM, 7. 80 μM, 8. 100 μM, 9. 500 μM) in PBS buffer (50% DMSO, pH = 7.4).

Fig. S8 Photographs of probe DH (10 μM) solution under 365 nm hand-held UV lamp in the presence of various concentrations of N₂H₄ (1. 0 μM, 2. 10 μM, 3. 20 μM, 4. 30 μM, 5. 50 μM, 6. 70 μM, 7. 80 μM, 8. 100 μM, 9. 500 μM) in PBS buffer (50% DMSO, pH = 7.4).
Table S1 Comparison of the present probe with the reported N$_2$H$_4$ fluorescent probe.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Detection limit</th>
<th>Practical application</th>
<th>Type of probe</th>
<th>Rf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.70 × 10^{-9} M</td>
<td>Water samples and cellular imaging</td>
<td>Ratiometric</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td>2.46 × 10^{-6} M</td>
<td>No</td>
<td>Turn on</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td>10 × 10^{-6} M</td>
<td>Cellular imaging</td>
<td>Turn on</td>
<td>[3]</td>
</tr>
<tr>
<td></td>
<td>2 × 10^{-5} M</td>
<td>No</td>
<td>Ratiometric</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>0.147 × 10^{-6} M</td>
<td>Cellular imaging</td>
<td>Turn on</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>8.8 × 10^{-9} M</td>
<td>Cellular imaging</td>
<td>Turn on</td>
<td>[6]</td>
</tr>
<tr>
<td></td>
<td>1.2 × 10^{-8} M</td>
<td>Cellular imaging</td>
<td>Turn on</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>7.4 × 10^{-8} M</td>
<td>Water samples and cellular imaging</td>
<td>Colorimetric and ratiometric</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>6.3 × 10^{-8} M</td>
<td>Water samples</td>
<td>Colorimetric and ratiometric</td>
<td>This work</td>
</tr>
</tbody>
</table>

