Electronic Supplementary Material (ESI)

A novel NBD-based fluorescent turn-on probe for detection of phosgene in

solution and the gas phase

Lei Yang,^a Zhiwei Sun,^{*a} Zan Li,^a Xiaojian Kong,^c Feng Wang,^a Xuefang Liu,^a Jingpu Tang,^a

Meiling Ping^a and Jinmao You^{ab}

- ^a Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China
- ^b Key Laboratory of Tibetan Medicine Research, Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
- ^c School of Chemical New Material Engineering, Shandong Polytechnic College, Jining, 272027, China

*Corresponding author.

Z. Sun, zhiweisun@qfnu.edu.cn, sunzhiw@126.com

Table of Contents

1. A mini review for reported probes

Fig. S1. Structures of probes recently reported for phosgene detection

Table S1. Comparisons of recently reported strategies for phosgene detection

2. Synthetic routes and characterization data for Probe 1, 2 and 3

- Fig. S2 Synthetic routes of Probe 1, 2 and 3
- Fig. S3 ¹H NMR for Probe 1
- Fig. S4 ¹³C NMR for Probe 1
- Fig. S5 ESI-HRMS for Probe 1
- **Fig. S6** ¹H NMR for Probe 2
- **Fig. S7** 13 C NMR for Probe 2
- Fig. S8 ESI-HRMS for Probe 2
- **Fig. S9** ¹H NMR for Probe **3**
- Fig. S10 ¹³C NMR for Probe 3
- Fig. S11 ESI-HRMS for Probe 3

3. The recognition mechanism and detection limit of probe 1 for phosgene

- Fig. S12 Determination of the detection limit of Probe 1
- Fig. S13 ESI-HRMS (a) and IR (b) spectra of Probe 1 and $\underline{1}$

4. The recognition mechanism, selectivity and detection limit of Probe 2 and 3

- Fig. S14 HPLC-ESI-MS analysis of Probe 2 before and after adding phosgene
- Fig. S15 HPLC-ESI-MS analysis of Probe 3 before and after adding phosgene
- Fig. S16 Fluorescence spectra, linearity, detection limit and selectivity of Probe 2
- Fig. S17 Fluorescence spectra, linearity, detection limit and selectivity of Probe 3

5. A comprehensive comparison of NBD-based probes for detection of phosgene

 Table S2. Comparisons of four NBD-based fluorescent probes

6. References

IC-phos

CN

N

OPD-TPE-Py-2CN

dRB-EDA

Coumarins 1

Coumarins 2

PY-OPD

o-Pac

8-EDAB

NBD-OPD

RB-OPD

NAP-OPD

1-oxime

o-Pab

Kundu's <u>1</u>

Kundu's <u>2</u>

Kundu's <u>3</u>

Kundu's <u>4</u>

Kundu's <u>6</u>

Ac-Phos

Sensor 1

Chen's Probe 1

BTA

1-CN

HBT-phos

Fig. S1. Structures of probes recently reported for phosgene detection.

Name and Literature	Mechanism	Ratiometric Or Turn-on	Fluorophore $\lambda_{ex}/\lambda_{em}$ (nm) Detection limit		Response time	References	
IC-phos	ICT	Ratiometric	3-benzimidazole λ_{ex} =440nm27 nMiminocoumarin λ_{em} =482/550 nm(Phosgene)		2 min	1	
Phos-2	ESIPT	Turn-on	Peridiamine of naphthalimide λ_{ex} =400nm λ_{em} =468nm0.2 nM (Triphosgene)		30 s	2	
SiR-amide	Conversion of amide to nitrile	Turn-on	Si-rhodamine	-rhodamine $\begin{array}{c} \lambda_{ex}=653nm \\ \lambda_{em}=679nm \end{array}$ $\begin{array}{c} 8.9 \text{ nM} \\ \text{(Triphosgene)} \end{array}$		4 min	3
BOD-SYR	Block PET	Turn-on	BODIPY $\begin{array}{c} \lambda_{ex} = 460 \text{nm} & 179 \text{ nM} \\ \lambda_{em} = 511 \text{nm} & (Triphosgene) \end{array}$		179 nM (Triphosgene)	10 s	4
OPD-TPE-Py -2CN	AIE	Turn-on	Tetraphenylethene (TPE) λ_{ex} =365nm λ_{em} =475nm		1.87 ppm (Phosgene)	2 min	5
Phos-1	ICT	Ratiometric	4,5-diamino-1,8- naphthalimide λ_{ex} =410nm λ_{em} =511/442nm		1.3 nM (Triphosgene)	20 min	6
dRB-EDA	opening of the spiro-(deoxy) lactam	Turn-on	Rhodamine	Rhodamine λ_{ex} =560nm λ_{em} =590nm50 nM (Triphosgene)			7
Coumarins 1 and 2	FRET	Ratiometric	Coumarin $\begin{array}{c} \lambda_{ex} = 343/435 nm \\ \lambda_{em} = 425/468 nm \end{array}$		50 μM (Triphosgene)	within seconds	8
PY-OPD	Block PET	Turn-on	Pyronin	λ_{ex} =580nm λ_{em} =593nm	20 nM (Triphosgene)	2 min	9
o-Pac	Block PET	Turn-on	7-(diethylamino)- coumarin λ_{ex} =368nm λ_{em} =446nm		3 nM (Triphosgene)	0.5 min	10

Table S1. Comparisons of recently reported strategies for phosgene detection.

8-EDAB	ICT	Ratiometric	BODIPY $\begin{array}{c} \lambda_{ex}=390/465 nm \\ \lambda_{em}=445/512 nm \end{array} $		0.12 nM (Phosgene)	1.5 s	11
NBD-OPD	Block PET	Turn-on	7-nitrobenzo[c] [1,2,5]oxadiazole	λ_{ex} =270nm λ_{em} =308nm	0.7 ppb (Triphosgene)	2 min	12
RB-OPD	Block PET	Turn-on	Rhodamine	λ_{ex} =530nm λ_{em} =575nm	2.8 ppb (Triphosgene)	1 min	12
NAP-OPD	Block PET	Turn-on	1,8- naphthalimide	λ_{ex} =340nm λ_{em} =480nm	2.8 ppb (Triphosgene)	3 min	12
1-oxime	Dehydration of oxime to nitrile	Turn-on	BODIPY	λ_{ex} =530nm λ_{em} =570nm	0.09 ppb (Triphosgene)	10 s	13
o-Pab	Block PET	Turn-on	BODIPY	λ_{ex} =450nm λ_{em} =530nm	2.7 nM (Triphosgene)	15 s	14
Kundu's <u>1</u>	Intramolecular cyclization	Turn-on	7-hydroxy coumarin	λ_{ex} =330nm λ_{em} =382nm	9 nM (Phosgene)	_	15
Kundu's <u>2</u>	Intramolecular cyclization	Turn-on	Coumarin	$\lambda_{ex}=315$ nm $\lambda_{em}=378$ nm	18 nM (Phosgene)	_	15
Kundu's <u>3</u>	Intramolecular cyclization	Turn-on	6H-benzo[c] chromen-6-one	λ_{ex} =330nm λ_{em} =395nm	14 nM (Phosgene)	_	15
Kundu's <u>4</u>	Intramolecular cyclization	Turn-on	3-(naphthalen-1-yl) quinolin-2(1H)-one	λ_{ex} =380nm λ_{em} =428nm	2 nM (Phosgene)	_	15
Kundu's <u>5</u>	Intramolecular cyclization	Turn-on	Quinolin-2(1H)-one	λ_{ex} =380nm λ_{em} =452nm	1 nM (Phosgene)	_	15
Kundu's <u>6</u>	Intramolecular cyclization	Turn-on	Naphtho[2,3-b] azet-2(1H)-one	λ_{ex} =380nm λ_{em} =430nm	6 nM (Phosgene)		15

Ac-Phos	Inhibit ICT	Ratiometric	Anthracene carboxyimide	$\lambda_{ex} = 434/502 \text{ nm}$ $\lambda_{em} = 482/615 \text{ nm}$	2.3 nM (Phosgene)	5 min	16
Sensor 1	Spirocyclic ring -open reaction	Turn-on	Benzimidazole -fused rhodamine	λ_{ex} =530nm λ_{em} =578nm	3.2 ppb (Triphosgene)	2 min	17
Chen's Probe 1	ESIPT	Ratiometric	2-(2-aminophenyl) benzothiazole	λ_{ex} =375nm λ_{em} =445/495nm	0.14 ppm (Phosgene)	5 min	18
BTA	ICT	Turn-on	Benzothiadiazole	λ_{ex} =380nm λ_{em} =508nm	20 nM (Phosgene)	20 min	19
1-CN	Block PET	Turn-on	BODIPY	λ_{ex} =480nm λ_{em} =516nm	24 pM (Phosgene)	within 3 s	20
HBT-phos	ESIPT	Turn-on	2-(2'-hydroxyphenyl)benzothiazole	λ_{ex} =438nm λ_{em} =474nm	0.48 nM (Phosgene)	20 min	21
R1	ESIPT	Ratiometric	3-oxime-4-hydroxy- 1,8-naphthalic- n-butylamide	$\lambda_{ex}=382nm$ $\lambda_{em}=495/577nm$	0.087 ppm (Phosgene)	1.43 s	22
AC-6ED	ICT	Ratiometric	Anthracene carboximide	λ_{ex} =470nm λ_{em} =520/610nm	0.09 nM (Phosgene)	Within 20 s	23
Phos-3	ICT	Ratiometric	Peridiamine of naphthalimide	λ_{ex} =400nm λ_{em} =488/548nm	0.3 nM (Phosgene)	60 s	24
Pi	ESIPT	Ratiometric	2-(1H-imidazol-2-yl) phenol	λ_{ex} =335nm λ_{em} =393/469nm	0.14 ppm (Phosgene)	30 s	25
Phos-4	ICT	Turn-on	1,8-naphthalimide	λ_{ex} =390nm λ_{em} =422/526nm	3.2 nM (Phosgene)	within 10 s	26
Probe 1	Block PET	Turn-on	7-nitro-2,1,3 -benzoxadiazole	λ_{ex} =460nm λ_{em} =525nm	1.2 nM (Triphosgene)	within 20 s	This work

"—" Not mentioned.

Fig. S2. Synthetic routes of probe 1(a), 2(b) and 3(c).

Fig. S3. ¹H NMR spectrum of probe 1 in CDCl₃ (500 MHZ).

Fig. S4. ¹³C NMR spectrum of probe 1 in CDCl₃ (125 MHZ).

Fig. S5. ESI-HRMS spectrum of probe 1.

Fig. S6. ¹H NMR spectrum of probe **2** in DMSO (500 MHZ).

Fig. S7. ¹³C NMR spectrum of probe 2 in DMSO (125 MHZ).

Fig. S8. ESI-HRMS spectrum of probe 2.

Fig. S9. ¹H NMR spectrum of probe 3 in DMSO (500 MHZ)

Fig. S10. ¹³C NMR spectrum of probe 3 in DMSO (125 MHZ).

Fig. S11. ESI-HRMS spectrum of probe 3.

Determination of the detection limit.

The detection limit for phosgene was calculated by the fluorescence titration experiments according to the reported method. A good linear relationship between the fluorescence intensity at 525 nm and triphosgene concentration (0 μ M-4 μ M) could be obtained (R²=0.9995). The value obtained for the triphosgene was calculated as 1.2 nM by the equation of **Detection limit = 3\sigma/k** (Where σ is the standard deviation of the blank sample (measured 10 times) and **k** is the slope of the linear regression equation.). σ = 0.0386, **k** = 98.3379.

Fig. S12. (a) Overlapped fluorescence spectra of 10 μ M probe 1 in CH₃CN, $\lambda_{ex} = 460$ nm, slits: 5/5 nm; (b) Standard deviation (σ) of blank measurement.

Fig. S13. ESI-HRMS(a) and IR(b) spectra of probe 1 and $\underline{1}$.

Fig. S14. HPLC-ESI-MS analysis of probe 2 before and after adding phosgene.

Fig. S15. HPLC-ESI-MS analysis of probe 3 before and after adding phosgene.

Fig. S16. (a) fluorescence spectra of Probe **2** (10 μ M) in CH₃CN upon addition of an increasing amount of triphosgene (0–20 μ M). (Inset) The color and fluorescence images of Probe **2** in the absence/ presence of triphosgene ($\lambda_{ex} = 460$ nm, slits: 10/10 nm). (b) The linear relationship between the fluorescence intensity at 530 nm and triphosgene concentration (0-4 μ M) in CH₃CN; (c) Standard deviation (σ) of blank measurement from Fig. S16a; (d) fluorescent intensity at 530 nm of Probe **2** (10 μ M) after the additions of analytes (30 μ M) (1) Blank, (2) HCHO, (3) NO, (4) HCl, (5) POCl₃, (6) CH₃COCl, (7) CH₂CICOCl, (8) (COCl)₂, (9) TsCl, (10) DCNP, (11) DCP, (12) SOCl₂, (13) Triphosgene ($\lambda_{ex} = 460$ nm, slits: 10/10 nm).

Fig. S17. (a) fluorescence spectra of Probe **3** (10 μ M) in CH₃CN upon addition of an increasing amount of triphosgene (0–20 μ M). (Inset) The color and fluorescence images of Probe **3** in the absence/ presence of triphosgene ($\lambda_{ex} = 460$ nm, slits: 10/10 nm). (b) The linear relationship between the fluorescence intensity at 540 nm and triphosgene concentration (0-3 μ M) in CH₃CN; (c) Standard deviation (σ) of blank measurement from Fig. S17a; (d) fluorescent intensity at 540 nm of Probe **3** (10 μ M) after the additions of analytes (30 μ M) (1) Blank, (2) HCHO, (3) NO, (4) HCl, (5) POCl₃, (6) CH₃COCl, (7) CH₂ClCOCl, (8) (COCl)₂, (9) TsCl, (10) DCNP, (11) DCP, (12) SOCl₂, (13) Triphosgene ($\lambda_{ex} = 460$ nm, slits: 10/10 nm).

Probes	$\lambda_{ex}/\lambda_{em}$	Fluorescence	Detection Limit	Response time	Selectivity	References	
NBD-OPD	$\lambda_{ex}=270 \text{ nm}$	Dlug	0.7 ppb	2 min	Good	12	
	$\lambda_{em}=308 \text{ nm}$	Diue	(2.3 nM)	2 11111			
Probe 1	λ_{ex} =460 nm	Groop	1.2 nM	Within 20 s	Good	This work	
	λ_{em} =525 nm	Green					
Probe 2	λ_{ex} =460 nm	Groop	20.1 nM	Within 20 s	Poor	This work	
	λ_{em} =530 nm	Uleeli					
Probe 3	λ_{ex} =460 nm	Graan	27.4 nM	Within 20 s	Poor	This work	
	λ_{em} =540 nm	Oreen	27.4 IIIVI			THIS WOLK	

Table S2. Comparisons of several NBD-based fluorescent probes.

References

- W. Feng, S. Gong, E. Zhou, X. Yin, G. Feng, Readily prepared iminocoumarin for rapid, colorimetric and ratiometric fluorescent detection of phosgene, Anal. Chim. Acta, 2018, 1029, 97-103.
- S. L. Wang, L. Zhong, Q. H. Song, Sensitive and selective detection of phosgene, diphosgene, and triphosgene by a 3,4-diaminonaphthalimide in solutions and the gas phase, Chem.-Eur. J, 2018, 24, 5652-5658.
- 3 M. Du, B. Huo, J. Liu, M. Li, A. Shen, X. Bai, et al., A turn-on fluorescent probe based on Si-rhodamine for sensitive and selective detection of phosgene in solution and in the gas phase, J. Mater. Chem. C, 2018, **6**, 10472-10479.
- 4 M. Sayar, E. Karakuş, T. Güner, B. Yildiz, U. H. Yildiz, M. Emrullahoğlu, A BODIPY-based

fluorescent probe to visually detect phosgene: toward the development of a handheld phosgene detector, Chem.-Eur. J, 2018, **24**, 3136-3140.

- 5 H. Xie, Y. Wu, F. Zeng, J. Chen, S. Wu, An AIE-based fluorescent test strip for the portable detection of gaseous phosgene, Chem. Commun, 2017, **53**, 9813-9816.
- 6 S. L. Wang, L. Zhong, Q. H. Song, A ratiometric fluorescent chemosensor for selective and visual detection of phosgene in solutions and in the gas phase, Chem. Commun, 2017, 53, 1530-1533.
- 7 X. Wu, Z. Wu, Y. Yang, S. Han, A highly sensitive fluorogenic chemodosimeter for rapid visual detection of phosgene, Chem. Commun, 2012, 48, 1895-1897.
- 8 H. Zhang, D. M. Rudkevich, A FRET approach to phosgene detection, Chem. Commun, 2007, 12, 1238-1239.
- 9 X. Zhou, Y. Zeng, C. Liyan, X. Wu, J. Yoon, A fluorescent sensor for dual-channel discrimination between phosgene and a nerve-gas mimic, Angew. Chem.-Int. Edit, 2016, 55, 4729-4733.
- 10 H. C. Xia, X. H. Xu, Q. H. Song, Fluorescent chemosensor for selective detection of phosgene in solutions and in gas phase, ACS Sens, 2017, 2, 178-182.
- Y. Zhang, A. Peng, X. Jie, Y. Lv, X. Wang, Z. Tian, A BODIPY-based fluorescent probe for detection of subnanomolar phosgene with rapid response and high selectivity, ACS Appl. Mater. Interfaces, 2017, 9, 13920-13927.
- 12 Y. Hu, L. Chen, H. Jung, Y. Zeng, S. Lee, K.M.K. Swamy, et al., Effective strategy for colorimetric and fluorescence sensing of phosgene based on small organic dyes and nanofiber platforms, ACS Appl. Mater. Interfaces, 2016, **8**, 22246-22252.
- 13 T. I. Kim, B. Hwang, J. Bouffard, Y. Kim, Instantaneous colorimetric and fluorogenic

detection of phosgene with a meso-oxime-BODIPY, Anal. Chem, 2017, 89, 12837-12842.

- 14 H. C. Xia, X. H. Xu, Q. H. Song, BODIPY-based fluorescent sensor for the recognization of phosgene in solutions and in gas phase, Anal. Chem, 2017, 89, 4192-4197.
- P. Kundu, K. C. Hwang, Rational design of fluorescent phosgene sensors, Anal. Chem, 2012,
 84, 4594-4597.
- Q. Hu, C. Duan, J. Wu, D. Su, L. Zeng, R. Sheng, Colorimetric and ratiometric chemosensor for visual detection of gaseous phosgene based on anthracene carboxyimide membrane, Anal. Chem, 2018, 90, 8686-8691.
- 17 Y. Hu, X. Zhou, H. Jung, S. J. Nam, M. H. Kim, J. Yoon, Colorimetric and fluorescent detecting phosgene by a second-generation chemosensor, Anal. Chem, 2018, 90, 3382-3386.
- 18 L. Chen, D. Wu, J. M. Kim, J. Yoon, An ESIPT-based fluorescence probe for colorimetric, ratiometric, and selective detection of phosgene in solutions and the gas phase, Anal. Chem, 2017, 89, 12596-12601.
- 19 W. Q. Zhang, K. Cheng, X. Yang, Q. Y. Li, H. Zhang, Z. Ma, et al., A benzothiadiazole-based fluorescent sensor for selective detection of oxalyl chloride and phosgene, Org. Chem. Front, 2017, 4, 1719-1725.
- T. I. Kim, D. Kim, J. Bouffard, Y. Kim, Rapid, specific, and ultrasensitive fluorogenic sensing of phosgene through an enhanced PeT mechanism, Sens. Actuator B-Chem, 2019, 283, 458-462.
- 21 L. Bai, W. Feng, G. Feng, An ultrasensitive fluorescent probe for phosgene detection in solution and in air, Dyes Pigment, 2019, 163, 483-488.
- 22 K. Maiti, D. Ghosh, R. Maiti, V. Vyas, P. Datta, D. Mandal, et al., Ratiometric chemodosimeter: an organic-nanofiber platform for sensing lethal phosgene gas, J. Mater.

Chem. A, 2019, 7, 1756-1767.

- 23 P. Liu, N. Liu, C. Liu, Y. Jia, L. Huang, G. Zhou, et al., A colorimetric and ratiometric fluorescent probe with ultralow detection limit and high selectivity for phosgene sensing, Dyes Pigment, 2019, 163, 489-495.
- 24 S. L. Wang, C. L. Zhang, Q. H. Song, Selectively instant-response nanofibers with a fluorescent chemosensor toward phosgene in gas phase, J. Mater. Chem. C, 2019, 7, 1510-1517.
- 25 C. Wu, H. Xu, Y. Li, R. Xie, P. Li, X. Pang, et al., An ESIPT-based fluorescent probe for the detection of phosgene in the solution and gas phases, Talanta, 2019, **200**, 78-83.
- 26 S. L. Wang, C. Li, Q. H. Song, Fluorescent chemosensor for dual-channel discrimination between phosgene and triphosgene, Anal Chem, 2019, **91**, 5690-5697.