Supplementary data

for

Determination of phenol degradation in chloride ion rich water by ferrate using chromatographic method in combination with on-line mass spectrometry analysis

Debo Wu1,2, Yihan Xiong2, Minghe He3, Shuiping Yang1*, Jialing Cai1, Zhangxiong Wu2, Shengpeng Sun2, Xiaodong Chen2 and Winston Duo Wu2*

1Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China

2Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China

3Koovine Environmental Protection Technology, Kunshan, Suzhou, Jiangsu, 215300, P.R. China

* Corresponding author

Winston Duo Wu
Email: duo.wu@suda.edu.cn
Phone: 86-512-6588-2762,
Fax: 86-512-6588-2750

Shuiping Yang
Email: wxipysp@163.com
Phone: 86-791-8389-6370,
Fax: 86-791-8389-6370
Fig. S1 Integrated IC chromatograms of standards of possible organic byproducts formed during phenol degradation by Fe(VI). Standard concentration: 1 ppm of formic acid and oxalic acid, and 10 ppm of acetic acid, maleic acid and succinic acid.

Fig. S2 HPLC chromatograms of catechol with comparison to 5 mg L⁻¹ standard during phenol degradation by Fe(VI). Experimental conditions: [phenol] = 0.1 mM, [Fe(VI)] = 0.5 mM, pH = 6.5.
Fig. S3 IC chromatograms of various intermediates after phenol degradation by Fe(VI). Experimental conditions: [phenol] = 0.1 mM, [Cl\(^-\)]_o = 0.05 M, [Fe(VI)] = 0.5 mM, reaction time = 45 min, pH = 9.

Fig. S4 IC chromatograms of various intermediates after phenol degradation by Fe(VI). Experimental conditions: [phenol] = 0.1 mM, [Cl\(^-\)] = 0 M, [Fe(VI)] = 0.5 mM, reaction time = 45 min, pH = 9.
Fig. S5 IC chromatograms of various intermediates with different Fe(VI) dosage after phenol degradation by Fe(VI). Experimental conditions: [phenol] = 0.1 mM, [Cl⁻] = 0 M, reaction time = 45 min, pH = 9.

Fig. S6. MS spectrum of phenol (m/z = 93) obtained from online EESI-MS analysis before addition of Fe(VI)
Fig. S7. MS spectrum of phenol (m/z = 93) obtained from online EESI-MS analysis at t=1.5 min after addition of Fe(VI)

Fig. S8. MS spectrum of phenol (m/z = 93) obtained from online EESI-MS analysis at t=5 min after addition of Fe(VI)
Fig. S9. MS² spectrum of p-benzoquinone ($m/z = 108$) obtained from online EESI-MS analysis. The m/z at 108.0 yielded the characteristic fragment of m/z at 80 by losing CO.

Fig. S10. MS² spectrum of catechol ($m/z = 109.0$) obtained from online EESI-MS analysis. The m/z at 109.0 yielded the characteristic fragment of m/z at 81 and 91 by losing CO and H₂O respectively.