Supporting Information

A fast-responding, highly sensitive detection system consisting of fluorescent probe and palladium ion for \(\text{N}_2\text{H}_4 \) in environmental water and living cells

Jie Cui,a,b Lingzhi Cao,a Guangshun Wang,a Wenjia Ji,a Hailiang Nie,a Chunliu Yang,a Xiaoling Zhang b

a Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Public Health, and Key Laboratory of Analytical Science and Technology of Hebei Province \& College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.

b Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China

E-mail: niehailiangts@163.com (Hailiang Nie);

zhangxl@bit.edu.cn (Xiaoling Zhang),
Figure S1. 1H-NMR of compound 1

Figure S2. 1H-NMR of probe BINC
Figure S3. 13C-NMR of probe BINC

Figure S4. HRMS of probe BINC
Figure S5. 1H-NMR of product ACMN

Figure S6. HRMS of product ACMN
Figure S7. Survival rate of HeLa cells after incubation with different concentrations (0 μM, 5 μM, 10 μM, 15 μM and 25 μM) of probe BINC for 24h.

Figure S8. The fluorescence respond of the BINC (5 μM) - Pd²⁺ (10 μM) system to N₂H₄, HCHO, CO, H₂ and NO in PBS (pH=7, PO₄³⁻ =10 mM, containing 30% ethanol). The final concentration was 10 μM for N₂H₄ and HCHO. Fluorescence detection for CO, H₂ and NO was carried out by bubbling (10 mL/min) an air stream of CO, H₂ and NO into BINC-Pd²⁺ for 10 min and then further reacting at room temperature for 30 min.