Supporting Information

Naphthalimide-linked bispyridinium clefts in selective aqueous sensing of triphosphate and triphosphate-based biomolecules

Subhendu Mondal and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, kumareshchem18@klyuniv.ac.in

Table S1: F	Reported	receptors	on the	triphos	phate/	pyroph	osphate	anions

Sl.	Structure of Compound	Selectivity	Solvent	Ref.
No.	-			
1.		Triphosphate	HEPES buffer solution, pH = 7.4	Anal. Chem. 2008 , 80 , 5312
2.	M = Zn, Cd, Cu	Pyrophosphate	HEPES buffer solution, pH = 7.4	<i>Inorg. Chem.</i> 2013, 52 , 11034.
3.	Zn ²⁺ NH HN NH	Di and Triphosphate	Tris-HCl buffer, pH = 7	<i>Chem. Eur.J.</i> 2016, 22 , 14890.
4.		Triphosphate/ pyrophosphate	HEPES buffer (pH = 7.2), containing 3% DMSO	<i>Dalton Trans.</i> , 2009, 7888
5.	NH NH NHCu ²⁺ -NH	Triphosphate	Aqueous solution	<i>Inorg. Chim.</i> <i>Acta</i> , 1998, 270 , 207
6.	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Pyrophosphate	Aqueous medium, pH = 7.4	Anal. Chem., 2013, 85 , 8369

7.	Ň	Pyrophosphate	Aqueous solution	Inorganic
		/ Triphosphate		Chemistry,
	O=S=O			2008, 47 , 6175

1. Change in emission of receptor 1 with various anions in CH_3CN-H_2O (1:1,v/v, 10 mM HEPES, pH = 6.8).

Figure S1. Change in emission of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) in CH₃CN-H₂O (1:1, v/v, 10 mM HEPES, pH = 6.8) upon addition of 4 equiv. amounts of (a) P₃O₁₀⁵⁻, (b) ATP, (c) HP₂O₇³⁻ (d) ADP, (e) AMP, (f) H₂PO₄⁻, (g) F⁻, (h) Cl⁻, (i) Br⁻, (j) I⁻, (k) OAc⁻, (l) HSO₄⁻, (m) NO₃⁻ and (n) P₂O₇⁴⁻ [concentration of anions was 1 x 10⁻³ M; all anions were used as tetrabutylammonium salts except P₃O₁₀⁵⁻, P₂O₇⁴⁻, ATP, ADP and AMP which were taken as sodium salt].

2. Change in emission of receptor 2 with various anions in CH₃CN-H₂O (1:1,v/v, using 10 mM HEPES, pH-6.8).

Figure S2. Change in emission of **2** ($c = 2.5 \times 10^{-5}$ M) in CH₃CN-H₂O (1:1, v/v, using 10 mM HEPES, pH = 6.8) upon addition of 25 equiv. amounts of (a) P₃O₁₀⁵⁻, (b) P₂O₇⁴⁻, (c)HP₂O₇³⁻ (d) H₂PO₄⁻, (e) F⁻, (f) Cl⁻, (g) Br⁻, (h) I⁻, (i) OAc⁻, (j) HSO₄⁻, (k) NO₃⁻, (l) ATP, (m) ADP and (n) AMP [concentration of anions was 1 x 10⁻³ M; all anions were used as tetrabutylammoniun salts except P₃O₁₀⁵⁻, P₂O₇⁴⁻, ATP, ADP and AMP which were taken as sodium salt].

3. Change in absorbance of receptor 1 with various anions in CH_3CN-H_2O (1:1, v/v, 10 mM HEPES, pH = 6.8).

Figure S3. Change in absorbance of 1 ($c = 2.5 \times 10^{-5}$ M) in CH₃CN-H₂O (1:1, v/v, 10 mM HEPES, pH = 6.8) upon addition of 4 equiv. amounts of (a) P₃O₁₀⁵⁻, (b) ATP, (c)HP₂O₇³⁻ (d) ADP, (e) AMP, (f) H₂PO₄⁻, (g) F⁻, (h) Cl⁻, (i) Br⁻, (j) I⁻, (k) OAc⁻, (l) HSO₄⁻, (m) NO₃⁻ and (n) P₂O₇⁴⁻ [concentration of anions was 1 x 10⁻³ M; all anions were used as tetrabutylammoniun salts except P₃O₁₀⁵⁻, P₂O₇⁴⁻, ATP, ADP and AMP which were taken as sodium salt].

4. Change in absorbance of receptor 2 with various anions of sodium salt in CH_3CN-H_2O (1:1, v/v, using 10 mM HEPES, pH = 6.8).

Figure S4. Change in absorbance of **2** ($c = 2.5 \times 10^{-5}$ M) in CH₃CN-H₂O (1:1, v/v, using 10 mM HEPES, pH = 6.8) upon addition of 25 equiv. amounts of (a) P₃O₁₀⁵⁻, (b) P₂O₇³⁻, (c)HP₂O₇³⁻ (d) H₂PO₄⁻, (e) F⁻, (f) Cl⁻, (g) Br⁻, (h) I⁻, (i) OAc⁻, (j) HSO₄⁻, (k) NO₃⁻ (l) ATP, (m) ADP and (n) AMP [concentration of anions was 1 x 10⁻³ M; all anions were used as tetrabutylammoniun salts except P₃O₁₀⁵⁻, P₂O₇⁴⁻, ATP, ADP and AMP which were taken as sodium salt].

5. Job and Non-linear binding constant plots for 2

Figure S5. (a) UV-Vis Job's plot of receptor **2** with $P_3O_{10}^{5-}$ at 360 nm in CH₃CN–H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer) where [H] = [G] = 2.5x10⁻⁵ M; (b) Binding constant curve from non-linear fitting of fluorescence titration data.

6. Detection Limit

Figure S6. Detection limits for receptor (a) **1** and (b) **2** (c = $2.5 \times 10^{-5} \text{ M}$) with $P_3O_{10}^{5-}$ ([$P_3O_{10}^{5-}$] = $1 \times 10^{-3} \text{ M}$) at 451nm in CH₃CN-H₂O (1:1, v/v, 10 mM HEPES, pH = 6.8).

7. Interaction with triphosphate-based nucleotides

Figure S7. Change in fluorescence ratio of (a) 1 ($c = 2.5 \times 10^{-5} \text{ M}$) in presence of 4 equiv. and (b) 2 ($c = 2.5 \times 10^{-5} \text{ M}$) in presence of 25 equiv. amounts of sodium salts of triphosphate-based nucleotides in CH₃CN-H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer).

Triphosphate- based nucleotides	Binding constants for compound 1 (M ⁻¹)	Binding constants for compound 2 (M ⁻¹)
ATP	$1.90 \pm 0.26 \ge 10^4$	$4.05 \pm 0.62 \ge 10^3$
СТР	$2.19 \pm 0.41 \ge 10^4$	$2.57 \pm 0.46 \ge 10^3$
GTP	$2.54 \pm 0.51 \ge 10^4$	$3.98 \pm 0.67 \ge 10^3$
ТТР	$1.08 \pm 0.12 \ge 10^4$	$3.53 \pm 0.45 \ge 10^3$
UTP	$(8.47 \pm 2.0) \ge 10^4$	$4.42 \pm 0.25 \text{ x } 10^3$

Table S2. Binding constants for compounds 1 and 2 with triphosphate-based nucleotides.

8. Interference study in the binding of P₃O₁₀⁵⁻ (PPPi)

Figure S8. Change in fluorescence ratio of **2** ($c = 2.5 \times 10^{-5} \text{ M}$) upon addition of 25 equiv. amounts of P₃O₁₀⁵⁻ to the receptor solution containing other anions in 25 equiv. amounts in CH₃CN–H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer).

9. ¹H NMR titration experiment

Figure S9. Partial ¹H NMR (400 MHz) spectra of (a) **1** ($c = 1.64 \times 10^{-3} \text{ M}$) and (b) **2** ($c = 1.63 \times 10^{-3} \text{ M}$) itself and in presence of 1 equiv. amount of sodium triphosphate in d₆-DMSO/D₂O mixture.

10. Enzymatic hydrolysis

Figure S10. Change in emission of (a) the ensemble of 1 ($c = 2.5 \times 10^{-5}$ M) with 4 eq. of ATP upon addition of 0.4 ml alkaline phosphatase (c = 1 mg/ml, prepared in water); (b) the ensemble of 2 ($c = 2.5 \times 10^{-5}$ M) with 25 eq. of ATP upon addition of 0.4 ml alkaline phosphatase (c = 1 mg/ml, prepared in water) with time. Insets show the change in fluorescence intensity at 451 nm with time.

11. Detection of Ca²⁺/Mg²⁺

Figure S11. Change in emission of the ensemble **2**-PPPi [prepared by mixing **2** ($c = 2.5 \times 10^{-5} \text{ M}$) with 25 equiv. amounts of PPPi ($c = 1 \times 10^{-3} \text{ M}$)] upon addition of (a) Ca²⁺ ($c = 5 \times 10^{-3} \text{ M}$) and (b) Mg²⁺ ions ($c = 5 \times 10^{-3} \text{ M}$) in CH₃CN/H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer) [Insets display the change in color of ensemble **2**-PPPi with the addition of Ca²⁺/Mg²⁺ as their perchlorate salts].

12. Response to Ca²⁺, Mg²⁺, Al³⁺ and Zn²⁺ and a comparative view

Figure S12. Change in emission of ensemble of (a) 1-PPPi [prepared by mixing 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with 4 equiv. amounts of PPPi ($c = 1 \times 10^{-3} \text{ M}$)] and (b) 2-PPPi [prepared by mixing 2 ($c = 2.5 \times 10^{-5} \text{ M}$) with 25 equiv. amounts of PPPi ($c = 1 \times 10^{-3} \text{ M}$)] ($c = 2.5 \times 10^{-5} \text{ M}$) in the presence of different metal ions ($c = 5 \times 10^{-3} \text{ M}$) in CH₃CN/H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer).

Figure S13. Bar plot indicating the retrieval of fluorescence intensity of (a) **1** and (b) **2** upon addition of metal ions ($c = 5 \times 10^{-3}$ M) to their respective ensembles in CH₃CN/H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer) [Ensemble preparation: **1**.PPPi was obtained by mixing **1** ($c = 2.5 \times 10^{-5}$ M) with 4 equiv. amounts of PPPi ($c = 1 \times 10^{-3}$ M) and **2**.PPPi was obtained by mixing **2** ($c = 2.5 \times 10^{-5}$ M) with 25 equiv. amounts of PPPi ($c = 1 \times 10^{-3}$ M)].

13. Detection Limits for ensembles with Ca²⁺/Mg²⁺

Figure S14. Detection limits for compound 1-PPPi ($c = 2.5 \times 10^{-5} \text{ M}$) with of (a) Ca²⁺ ($c = 5 \times 10^{-3} \text{ M}$) and (b) Mg²⁺ ($c = 5 \times 10^{-3} \text{ M}$) and compound 2-PPPi ($c = 2.5 \times 10^{-5} \text{ M}$) with of (a) Ca²⁺ ($c = 5 \times 10^{-3} \text{ M}$) and (b) Mg²⁺ ($c = 5 \times 10^{-3} \text{ M}$) in CH₃CN/H₂O (1: 1, v/v, pH = 6.8, 10 mM HEPES buffer).

¹³C NMR (d₆-DMSO, 100 MHz) of 1

.90 ppm

HRMS of 1

HRMS of 2

