Supporting Information

One facile fluorescence strategy for sensitive detection of microcystin-LR based on dsDNA-templated copper nanoclusters

Yanli Zhang,a Yanqiong Lai,a Xia Teng,a Shaofu Pu,a Zhi Yang,*a Pengfei Pang,*a Hongbin Wang,a Chun Yang,b Wenrong Yang c and Colin J. Barrow c

a National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
b Shaanxi Geological Survey Experiment Center, Xi'an 710068, P. R. China
c School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia

* Corresponding author. Tel.: +86 871 65910017; fax: +86 871 65910017.
E-mail address: ymu777@163.com (Z. Yang), pengfeipang@yahoo.com (P. Pang)
Scheme S1 Chemical structure of MC-LR.
Fig. S1 Effect of cDNA length on the fluorescent intensity of dsDNA-CuNCs probe.

Fig. S2 Effect of dsDNA concentration on the fluorescent intensity of dsDNA-CuNCs probe.
Fig. S3 Effect of Cu$^{2+}$ concentration on the fluorescent intensity of dsDNA-CuNCs probe.

Fig. S4 Effect of AA concentration on the fluorescent intensity of dsDNA-CuNCs probe.
Fig. S5 Effect of hybridization time of Apt and cDNA on the fluorescent intensity of dsDNA-CuNCs probe.

Fig. S6 Effect of formation time of dsDNA-CuNCs on the fluorescent intensity of dsDNA-CuNCs probe.
Fig. S7 Effect of incubation time of MC-LR and dsDNA-CuNCs on the fluorescent intensity of dsDNA-CuNCs probe.