Supplementary information

Y₁ receptor ligand synergized with P-glycoprotein inhibitor improves therapeutic efficacy of multidrug resistant breast cancer

Yinjie Wang ‡, a, c, Zhenqi Jiang ‡, a, c, Bo Yuan a, Yuchen Tian a, Lingchao Xiang a, Yanying Li a, c, Yong Yang b, Juan Li*, a, Aiguo Wu *, a

a Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P.R. China
b Department of Clinical Laboratory, the Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, 315010, China
c University of Chinese Academy of Sciences, Beijing 100049, China

Email: aiguo@nimte.ac.cn
lij@nimte.ac.cn

‡ These authors contributed equally.

Keywords: multidrug resistant breast cancer, P-glycoprotein inhibitor, Y₁ receptor ligand, targeted therapy, nanomicelles
Materials: Ethanol, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC), N-hydroxysuccinimide (NHS), 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide (MTT), HPLC grade acetonitrile and trifluoroacetic acid (TFA) were purchased from Aladdin Industrial Inc (Shanghai, China). Penicillin, and streptomycin were purchased from Invitrogen™ (Carlsbad, USA). [Asn⁶, Pro³⁴]-NPY (AP) (YPSKPNPNGEDAPAEGLARYYSALRHYINLI TRPRY-NH₂) were synthesized by the Dechi Biosciences Co, Ltd (Shanghai, China). Doxorubicin (DOX) hydrochloride and IRDye780 iodide were purchased from Sigma-Aldrich Co. LLC (Shanghai, China). Tariquidar (Tar) was purchased from ApixBio (Hangzhou, China). DPSE-PEG2000 (50:50) and PLGA-PEG-2000 (50:50) were purchased from A.V.T. Pharmaceutical Ltd. (Shanghai, China). All reagents were used as received.

Characterization: Particle size, size distribution, and zeta potential of the nanomicelle dispersions were measured at room temperature by dynamic light scattering (DLS) using a Zeta particle size analyzer (Nano-ZS, Malvern, England). The data was collected on an autocorrelator with a detection angle of 173°. To obtain detailed structural and morphological information, ~1 μL of the diluted micelle dispersion was dropped onto a copper grid coated with a thin layer of carbon film and then dried at room temperature. High-resolution transmission electron microscopy (HRTEM) images were recorded from a JEOL-2100 (JEOL, Japan) instrument, which was operated at 200 kV.

Cell culture: Human multidrug resistant breast cancer line MCF-7/ADR was cultured in Dulbecco’s modified Eagle’s medium (DMEM). The medium contains fetal bovine serum (FBS, 20 wt%), penicillin (100 units/mL), and streptomycin (100 mg/mL). The cells were maintained in a 37 °C incubator with 5% CO₂. Origin cells human breast cancer cells MCF-7 were bought from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China), then incubated into MCF-7/ADR cell line in our lab.¹
Figure S1 Western blot analysis of Y₁R expression on MCF-7/ADR cells.
Figure S2 TEM images of NM-DOX, AP-NM-DOX, NM-DOX&Tar and AP-NM-DOX&Tar.
Figure S3 LC-MS images of Tar standards, NM-DOX&Tar and AP-NM-DOX&Tar.
Figure S4 Mass spectrometry images of Tar.
Figure S5 Standard curve of Tar. Tar concentration is varied from 50 to 400 nM.

The equation of the line is $y = 0.0959x + 0.6807$ with $R^2 = 0.9975$.
Figure S6 Pyrene excitation spectra of PEG-PLGA in aqueous solution. Emission wavelength is at 302 nm.
Figure S7 Intensity ratio of I_{335}/I_{333} versus $\lg C$ for PEG-PLGA in water. The critical micelle concentration of PEG-PLGA is 8.073 μg/mL.
Figure S8 DOX concentration of AP-NM-DOX before and after the demulsification by acetonitrile.
Figure S9 XY-Z series of MCF-7/ADR cells incubated with AP-NM-DOX&Tar for 8 h. Z-axis is from 0 to 3 μm.
Figure S10 Effect of different proportions of PEG-PLGA to AP-DSPE-PEG (w/w) on particle size and zeta potential. The proportion of PEG-PLGA to AP-DSPE-PEG (w/w) varies from 20:1 to 100:1. Mean ± SD (n = 3).
Figure S11 Inhibitory effect of different proportions of PEG-PLGA to AP-DSPE-PEG (w/w) on MCF-7/ADR cells. The proportion of PEG-PLGA to AP-DSPE-PEG (w/w) varies from 20:1 to 100:1. DOX concentration is varied from 0.3125 to 80 μg/mL. Mean ± SD (n = 3).
Figure S12 - Inhibition effect of NM-DOX, AP-NM-DOX, NM-DOX&Tar, and AP-NM-DOX&Tar on MCF-7/ADR cells after 24 h incubation. DOX concentration is varied from 0.3125 to 80 μg/mL. Mean ± SD (n = 3).
Figure S13 Inhibition effect of NM-DOX, AP-NM-DOX, NM-DOX&Tar, and AP-NM-DOX&Tar on MCF-7 cells after 24 h incubation. DOX concentration is varied from 0.3125 to 80 μg/mL. Mean ± SD (n = 3).
Figure S14 IC\textsubscript{50} value of different micelles on MCF-7 cells after 24 h incubation. Mean ± SD (n = 3). **p < 0.01, * p < 0.05
Figure S15 Inhibition effect of NM-DOX, AP-NM-DOX, NM-DOX + Antagonist, and AP-NM-DOX+Antagonist on MCF-7/ADR cells after 24 h incubation. DOX concentration is varied from 0.3125 to 80 μg/mL. Mean ± SD (n = 3), Y$_1$R antagonist (CAS: 221697-09-2) was used at a dose of 10 μM.
Figure S16 IC$_{50}$ value of different micelles of NM-DOX, AP-NM-DOX, NM-DOX+Antagonist, and AP-NM-DOX+Antagonist on MCF-7/ADR cells after 24 h incubation. DOX concentration is varied from 0.3125 to 80 μg/mL. Mean ± SD (n = 3), an antagonist of Y$_1$R (CAS: 221697-09-2) was used at a dose of 10 μM. ** $p < 0.01$
Figure S17 Mean fluorescence intensity (MFI) of MCF-7/ADR cells incubated with different IRDye780 loaded micelles following by flow cytometry analysis. All micelles were incubated with MCF-7/ADR cells for 8 h.
Figure S18 *In vivo* fluorescence imaging of MCF-7/ADR tumor bearing mice were taken before and after intravenous injection of NM-IRDye780 at 0, 2, 4, 6, 12, 24 h (IRDye780: 0.25 mg/kg).
Figure S19 *In vivo* fluorescence imaging of MCF-7/ADR tumor bearing mice were taken before and after intravenous injection of AP-NM-IRDye780 at 0, 2, 4, 6, 12, 24 h (IRDye780: 0.25 mg/kg).
Figure S20 *In vivo* fluorescence imaging of MCF-7/ADR tumor bearing mice were taken before and after intravenous injection of NM-IRDye780&Tar at 0, 2, 4, 6, 12, 24 h (IRDye780: 0.25 mg/kg).
Figure S21 *In vivo* fluorescence imaging of MCF-7/ADR tumor bearing mice were taken before and after intravenous injection AP-NM-IRDye780&Tar at 0, 2, 4, 6, 12, 24 h (IRDye780: 0.25 mg/kg).
Figure S22 Photos of tumor-bearing mice after i.v. injection of PBS, free DOX, NM-DOX, AP-NM-DOX, NM-DOX&Tar, and AP-NM-DOX&Tar from 0 to 14 days.
Figure S23 Hematological analysis of the mice after i.v. injection of PBS, free DOX, NM-DOX, AP-NM-DOX, NM-DOX&Tar, and AP-NM-DOX&Tar. Mean ± SD (n = 3).
Figure S24 H&E staining of MCF-7/ADR tumor bearing nude mice liver after intravenous injection of Free DOX, NM-DOX, AP-NM-DOX, NM-DOX&Tar, and AP-NM-DOX &Tar. The mice were killed at 28th day after six times of tail vein injection.
Table S1 Characterization of nanomicelles

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>DOX loading efficiency (%)</th>
<th>Tar loading efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM-DOX</td>
<td>71.4 ± 3.1</td>
<td>0.189 ± 0.017</td>
<td>-9.8 ± 0.9</td>
<td>81.4 ± 1.1</td>
<td>--</td>
</tr>
<tr>
<td>AP-NM-DOX</td>
<td>60.9 ± 2.4</td>
<td>0.217 ± 0.014</td>
<td>-7.9 ± 0.8</td>
<td>82.3 ± 2.4</td>
<td>--</td>
</tr>
<tr>
<td>NM-DOX&Tar</td>
<td>74.5 ± 4.2</td>
<td>0.201 ± 0.009</td>
<td>-10.1 ± 0.6</td>
<td>86.9 ± 1.7</td>
<td>67.8 ± 2.3</td>
</tr>
<tr>
<td>AP-NM-DOX&Tar</td>
<td>82.1 ± 3.9</td>
<td>0.196 ± 0.008</td>
<td>-9.1 ± 1.3</td>
<td>87.1 ± 1.4</td>
<td>65.9 ± 1.8</td>
</tr>
</tbody>
</table>