Supporting information for:

Efficient Targeted Cancer Cell Detection, Isolation and Enumeration using Immuno-Nano/hybrid Magnetic microgels

Amir Seyfoori1,2,3, S.A. Seyyed Ebrahimi4, Arman Yousefi1, Mohsen Akbari2,4,5

1 Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran

2 Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada, V8P 5C2.

3 Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

4 Center for Biomedical Research, University of Victoria, Victoria, Canada, V8P 5C2.

5 Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, Canada, V8P 5C2.

Corresponding author: 1 saseyyed@ut.ac.ir, 2,4,5 makbari@uvic.ca

Supporting information contains 7 figures:
Fig. S1: B) XRD patterns of the samples with different hydrolysis temperature I) T=70, II) T=85 and III) T=100.
Fig. S2: DSC profile for lepidocrocite nanorods heating up to 600 °C in air atmosphere.
Fig. S3: DLS analysis of the pure synthesized PNIPAM-AA microgel
Fig. S4. A) SEM image and B) TEM image of the chitosan coated mNRs. C) SEM image of the synthesized PNIPAM-AA microgels and D) hybrid microgels after mNR attachment.
Fig. S5. Standard curve of the BSA protein using Bradford assay for antibody quantification.
Fig. S6: MACS apparatus for CTC isolation containing separation column and permanent magnet
Fig. S7: A) Calibration plot between the magnetization of the labeled cells versus different SKBR-3 cell numbers. Error bars represent the standard deviations of five replicates. B,D) Calibration curve at 2 different linear range of the main curve.