Supplementary Information

Sustained delivery of growth factors with a high loading efficiency in a layer by layer assembly

Febriyani F. R. Damanik1,2, Marzia Brunelli1,3, Laura Pastorino3, Carmelina Ruggiero3, Clemens van Blitterswijk1,2, Joris Rotmans4, Lorenzo Moroni1,2,*

F.F.R. Damanik, Prof. C. van Blitterswijk, Dr. L. Moroni

1University of Twente, Drienerlolaan 5, Zuidhorst 145, 7522 NB Enschede, the Netherlands;

2Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitsingel 40, 6229 ER Maastricht, the Netherlands;

3Laboratory of Nanobioscience and Medical Informatic, Dept. Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy.

4Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands

*Corresponding Author: E-mail: l.moroni@maastrichtuniversity.nl
Supplementary Figure 1. Areal mass density of the deposited multilayer (PEI/PSS)₂(COL/DS)₄ deposited onto the QCM-D sensor. Increased COL absorption was seen at pH 3 (blue circle) compared to pH 7 (black square).
Supplementary Figure 2. SEM analysis of TGF-β1, TGF-β1/DS and TGF-β1/HEP with different surface activations shows different surface topographies. Scale bar: 2 µm.

Supplementary Figure 3. BET analysis of surface area before and after (PEI/PSS)$_2$ alone, with (TGF-β1/DS)$_4$ and (COL/DS)$_4$ deposition. The surface area decreases upon layer build-up.
Supplementary Figure 4. Loading capacity of collagen at pH 3 loaded in Ar-, Ox30- and Ox100-surface-treated rods with (COL/DS)$_n$. Ar rods showed the most loading of COL.
Supplementary Figure 5. Release rate profile at 4 hours, 1, 4 and 7 days on Ar, Ox30, Ox100 LBL implants. (A-B) (PEI/PSS)$_2$(TGF-β1/DS)$_4$ implants showed a burst release of 0.9 or 1.2 ng/ml for PBS and 1.1 ng/ml for culture medium incubation at 4 hours. At day 1 an increase to 1.3 ng/ml was seen in PBS incubation, while in culture medium the release slightly dropped below 1.1 ng/ml. In culture medium, the concentration was kept at day 4 but decreased at day 7 to 0.8, 0.7 and 0.5 ng/ml for Ar, Ox30 and Ox100 LBL implants respectively. PBS incubation at day 4 resulted in a decreased release to 1.2, 0.9 and 0.7 ng/ml for Ar, Ox30 and Ox100 LBL respectively, but remained constant at day 7. (C-D) (PEI/PSS)$_2$(TGF-β1/HEP)$_4$ implants displayed a release at 4 hours between 0.55-0.6 ng/ml in PBS incubation which remained constant until day 4. Ar and Ox30 LBL implants diminished to a concentration of 0.45 ng/ml at day 7, while Ox100 LBL implants remained constant at above 0.55 ng/ml. In culture medium incubation, a concentration between 0.8-0.6 ng/ml was seen at 4 hours and day 1 until day 4, when Ar and Ox30 LBL implants had a decrease of about 0.1 ng/ml, while Ox100 showed an increase of 0.05 ng/ml between day 1 and day 4. Concentration at day 7 was 0.45 ng/ml for Ar and 0.55 ng/ml for Ox30 and Ox100 LBL implants.
Supplementary Figure 6. DNA assay on non-deposited and deposited TGF-β1 rods. (A) Cell quantification on surface treated rods with or without LBL TGF-β1/DS sequence at day 1 (left) and 4 (right). At day 1 DNA analysis showed higher cell attachment on LBL rods, with deposition on Ox100 rods providing the highest proliferation. (B) DNA assay of non-treated rods (X), argon plasma treated rods (Ar) and argon plasma treated rods with TGF-β1/HEP sequence, (TGF-β1/Hep)4, at 4 hours, day 1 and 4. Analysis showed higher proliferation on (TGF-β1/Hep)4 rods compared to X and Ar rods.
Supplementary Figure 7. SEM images of Ox100 surface treated rods with (top) and without (bottom) LBL TGF-β1, seeded with 500,000 TK173 cells for a period of 4 days. Ox100 surface treated rods with LBL TGF-β1 rods provided higher proliferation showing a thicker cell layer compared to the Ox100 surface treated rods without the LBL coating. Scale bar: 200 µm (left) and 50 µm (right).
Supplementary Figure 8. Loading capacity of TGF-β1 with different parameter modification. (A) No difference in TGF-β1 loading capacity was seen when reducing MilliQ water rinsing time. (B) Changing pH to 3, 10 and 9 of PEI, PSS and DS or HEP, respectively, significantly increased TGF-β1 loading capacity. (C) Increasing TGF-β1 concentration significantly increased the loading capacity in Ar and Ox100 surface treated implants. Star (*P < 0.05, ** P < 0.01, *** P < 0.001) indicate statistically significant values compared to TGF-β1 loading with PEI, PSS DS or Hep at pH 7 or TGF-β1 loaded at 10 ng/ml for 10 minutes. Furthermore, increasing the TGF-β1 deposition and rinsing with PBS instead of MilliQ water increased loading capacity on all surface treated implants with lower variability.
Supplementary Figure 9. Release rate of TGF-β1 before and after additional layer of PEI. TGF-β1 was loaded for 20 minutes (per GF layer (40 ng/ml, pH 5)) (A) A burst release was seen, in which more than half of the TGF-β1 loaded was release after 1 day. (B) The burst release decreased after the additional layer of PEI was deposited. In all sequence Ox100 LBL implants showed the highest release in TGF-β1.

Supplementary Figure 10. Loading capacity and release profile of PDGF-ββ and TGF-β1 LBL implants. Both GFs were loaded at RT for 20 minutes per GF layer (40 ng/ml, pH 5). (A) Loading capacity of PDGF-ββ was seen to be higher than TGF-β1. (B) Release rate of PDGF-ββ on both HEP and DS sequence (1 mg/ml) showed hardly any signal of viable PDGF-ββ release compared to TGF-β1.