Supporting Information

A Controllable Local Drug Delivery System Based on Porous Fibers for Synergistic Treatment of Melanoma and Promoting Wound Healing

Zhipeng Yuana, Kexin Zhanga, Xiangyu Jiaoa, Yaru Chenga, Yiyi Zhanga, Peixun Zhangb, Xueji Zhanga, Yongqiang Wena,*

\textit{a. Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China}
\textit{b. Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100083, China}

* for corresponding author.

\textit{E-mail address: wvyq_wen@ustb.edu.cn}

Fig. S1 Photographs of porous fiber membrane incorporated with different amounts of CuS nanoparticles.

Fig. S1 Photographs of porous fiber membrane incorporated with different amounts of CuS nanoparticles.
Fig. S2 The morphology of 30PFMP.

Fig. S3 Ultraviolet-visible absorption spectroscopy of CuS.

Fig. S4 Drug release profiles of 30PFMP at 37°C and under NIR laser irradiation.
Fig. S5 The photothermal heating curves with different laser power densities after irradiation for 1000 s in the wet environment (1ml PBS).

Fig. S6 Photographs of the tumor and surrounding skin on day 0, day 4, day 8 and day 14 after various treatment.
Fig. S7 H&E staining images of skin wounds at the tumor site on day 14 of control, 30PFMP, 30PFMP-D, 30PFMP+Laser, 30SFMP-D+Laser, 30PFMP-D+Laser groups.