Size Effect of Mesoporous Organosilica Nanoparticles on Penetration and Accumulation for Tumor

Junjie Zhang,a Xiaofen Wang,b Jun Wen,c Xiaodan Su,a Lixing Weng,a Jintao Li,e Chunyan Wang,b Ying Tian,b Yunlei Zhang,b Jun Tao,a Peng Xu,d Lianhui Wang,a Guangming Lu,b and Zhaogang Tenga,b

a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210046 Jiangsu, P. R. China
Email: iamlhwang@njupt.edu.cn
Email: iamzgteng@njupt.edu.cn
b Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002 Jiangsu, P. R. China
c Department of Medical Imaging, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002 Jiangsu, P. R. China
d College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu, P. R. China
e College of Computer and Information, Hohai University, 210098 Jiangsu, P. R. China
Figure S1. High magnification TEM image of the 60-nm MONs. scale bar: 50 nm.

Figure S2. High magnification TEM image of the 100-nm MONs.
Figure S3. The hydrodynamic size distributions in DMEM containing 10% FBS.

Figure S4. Weight change of the MON-treated mice 30 days post-injection at a dose of 5 mg kg$^{-1}$.
Figure S5. Serum biochemical analysis of the mice after injection with different-sized MONs at a dose of 5 mg/kg. The measures include ALT, AST, BUN, and Cre.
Figure S6. Histological images of the major organs of mice after intravenous administration of different-sized MONs at a dose of 5 mg kg\(^{-1}\) at 30 days postinjection. All images shown are of 100× magnification.
Figure S7. Histological images of the major organs of mice after intravenous administration of different-sized MONs at a dose of 20 mg kg\(^{-1}\) at 30 days postinjection. All images shown are of 100× magnification.
Figure S8. Excretion percentages of the MONs of different particle sizes in urine of ICR mice after tail intravenous injection. Male ICR mice were randomly separated into four groups (n = 5) and intravenously injected with MONCs (MON-Cy5.5) at doses of 5 mg kg\(^{-1}\)d. At 2, 12, 24 and 48 h, liquid urine (50 \(\mu\)L) was mixed with cool methanol (450 \(\mu\)L) to determine the fluorescence intensity \((A_u, \text{ in count per mg urine})\) and protein concentration of urine \((C_p, \text{ in mg protein per mg urine})\). The protein content in urine (expressed by \(C_p\)) was measured by the Bradford method using a Bradford Protein Assay Kit, which was purchased from Nanjing KeyGen Biotech Co. Ltd. (Nanjing, China). Furthermore, the sample percentages in each urine specimen \((P_{s,\text{urine}}, \text{ in } \%)\) could be calculated according to the volume of urine \((V_{\text{urine}}, \text{ in mL})\), the protein concentration in urine \((C_{p,\text{urine}}, \text{ in mg protein per mL urine})\), the fluorescence density of each sample in urine \((A_{s,\text{urine}} = A_u/C_{p,\text{urine}}, \text{ in count per mg protein})\), and the fluorescence intensity of each unit mass sample \((A_{s0}, \text{ in count per } \mu\text{g MONs})\), namely \(P_{s,\text{urine}} = C_{p,\text{urine}} \times V_{\text{urine}} \times A_{s,\text{urine}}/A_{s0}\).
Figure S9. Fluorescent linear profiles of the U87MG MCSs at a depth of 120 μm after incubating with different sized MONs for 4 h.

Figure S10. Tumor penetration depth analysis. The profile lines show the fluorescence changes from the tumor periphery to the interior as shown in Figure 4g.