Supporting Information

A novel cell membrane-cloaked magnetic nanogripper with enhanced stability for drug discovery

Yusi Bu, a,b Qi Hu, a,b Xiaolin Zhang, a,b Ting Li, a,b Xiaoyu Xie, * a,b and Sicen Wang * a,b

a School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China

b Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi’an 710061, China

Corresponding Authors

*Tel.: +86 29 82656788. E-mail: xiexiaoyu@xjtu.edu.cn (X. Xie).

*Tel.: +86 29 82656788. E-mail: wangsc@mail.xjtu.edu.cn (S. Wang).
Samples preparation for TEM:

1. Use 300 mesh carbon coated grids.
2. Prepare α_{1A}/MNGs solution and ultrasonic dispersed evenly.
3. Place a drop (approx. 20 μL) of α_{1A}/MNGs solution on the grid.
4. Dry overnight in a Petri dish and view the next day in TEM.
Figure S1. Size and zeta potential results of high α_{1A}-AR expression HEK293 cell membrane-derived vesicles (a), Fe$_3$O$_4$-CHO nanoparticles (b) and α_{1A}/MNGs (c) (A); FT-IR spectra of Fe$_3$O$_4$ (a), Fe$_3$O$_4$-SiO$_2$ (b), Fe$_3$O$_4$-CHO (c) and α_{1A}/MNGs (d) (B); XRD patterns of Fe$_3$O$_4$ (a), Fe$_3$O$_4$-CHO (b) and α_{1A}/MNGs (c) (C) and VSM curves of α_{1A}/MNGs (a), Fe$_3$O$_4$-CHO (b) and Fe$_3$O$_4$ (c) (D).
Figure S2. Bright-field images of confocal microscopy images of MNGs cores (A) and α1A/MNGs (B).
Figure S3. The binding model of compounds tamsulosin (A), bulleyaconitine A (B) and benzoylhypacoitine (C) with α_{1A} AR (PDB ID: 4iye).