Supporting Information

Iodine-DMSO Promoted Divergent Reactivities of Acetylenes.

Suhail A. Rather,a,b Atul Kumar,a,b and Qazi Naveed Ahmed a,b,*

aMedicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Jammu, India.
bAcademy of Scientific and Innovative Research (AcSIR-IIIM), Jammu-180001, India.

Table of Contents

1. General information ... S2
2. Optimization tables... S2-S4
3. General procedure .. S5-S6
4. Procedures of control experiments .. S6-S8
5. Characterization data .. S8-S18
6. References ... S18-S19
7. 1H NMR and 13C NMR spectra of those compounds S20-S70
1. General information

All chemicals were obtained from Sigma-Aldrich, Alfa Aesar and S. D. Fine chemicals and used as received. The progress of the reactions was monitored by thin-layer chromatography (TLC) on precoated silica-gel plates using Merck Silica Gel 60 F_{254}, Cat. No. 1.05554.0007 and visualized by short-wave ultraviolet light as well as by treatment with I₂. Column chromatography was performed by hand using silica-gel (100–200 mesh, Silicycle). \(^1\)H and \(^{13}\)C NMR spectra were recorded on Brucker-Avance DPX FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃: 7.26 ppm). Carbon nuclear magnetic resonance spectra (\(^{13}\)C NMR solvent CDCl₃: 77.0 ppm) were recorded at 125 MHz or 100 MHz: chemical data for carbons are reported in parts per million (ppm, \(\delta\) scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent. ESI-MS and HRMS spectra were recorded on Agilent 1100 LC-Q-TOF and HRMS-6540-UHD machines respectively. IR spectra were recorded on Perkin-Elmer IR spectrophotometer with absorption band given in cm\(^{-1}\). Melting points of compounds were recorded with BUCHI (B-545) instrument.

2) Optimization tables:

Optimization table for (2,2-diiodo-1-phenylvinyl)(methyl)sulfane 2a:

<table>
<thead>
<tr>
<th>entry</th>
<th>Reactant (mmol)</th>
<th>I₂ (mmol)</th>
<th>temp °C</th>
<th>%yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>rt</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>60</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.0</td>
<td>80</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>1.0</td>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.5</td>
<td>80</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>2.0</td>
<td>80</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>2.2</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>2.5</td>
<td>80</td>
<td>79</td>
</tr>
</tbody>
</table>

Reaction conditions: phenylacetylene \(1a\) (1.0 mmol), I₂ (2.2 mmol) in 3 mL of DMSO at 80 °C for 2 h,
Optimization table for (1,2,2-triiodovinyl)benzene 3a:

<table>
<thead>
<tr>
<th>entry</th>
<th>1 (mmol)</th>
<th>I$_2$ (mmol)</th>
<th>temp °C</th>
<th>%yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>rt</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>1.0</td>
<td>-</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.2</td>
<td>-</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.5</td>
<td>-</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>2.1</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>2.2</td>
<td>-</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>2.5</td>
<td>-</td>
<td>81</td>
</tr>
</tbody>
</table>

Reaction conditions: phenylacetylene 1a (1.0 mmol), I$_2$ (2.2 mmol) in 3 mL of DMSO at rt for 4 h

Optimization table for 2-chloro-1-phenylethan-1-one 4a:

<table>
<thead>
<tr>
<th>entry</th>
<th>1 (mmol)</th>
<th>I$_2$ (mmol)</th>
<th>reagent</th>
<th>temp °C</th>
<th>%yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>HCl (2N,0.5ml)</td>
<td>rt</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.5</td>
<td>HCl (2N,0.5ml)</td>
<td>rt</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>2.0</td>
<td>HCl (2N,0.5ml)</td>
<td>rt</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>2.2</td>
<td>HCl (2N,0.5ml)</td>
<td>rt</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>2.5</td>
<td>HCl (2N,0.5ml)</td>
<td>rt</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>2.2</td>
<td>HCl (3N,0.5ml)</td>
<td>rt</td>
<td>68</td>
</tr>
</tbody>
</table>

Reaction condition: phenylacetylene 1a (1.0 mmol), I$_2$ (2.2 mmol), 2N HCl (0.5 mL) in 3 mL of DMSO at rt for 16 h
Optimization table for 2,2-dichloro-1-phenylethan-1-one 5a:

![Chemical structure]

<table>
<thead>
<tr>
<th>entry</th>
<th>1 (mmol)</th>
<th>I₂ (mmol)</th>
<th>reagent</th>
<th>Temp °C</th>
<th>%yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>HCl (2N)</td>
<td>rt</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>NaCl(1.0 mmol)</td>
<td>rt</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.5</td>
<td>NaCl(1.0 mmol)</td>
<td>rt</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>2.0</td>
<td>NaCl(1.0 mmol)</td>
<td>rt</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>2.2</td>
<td>NaCl(1.0 mmol)</td>
<td>rt</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>2.2</td>
<td>NaCl(2.0 mmol)</td>
<td>rt</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>2.5</td>
<td>NaCl(2.0 mmol)</td>
<td>rt</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>2.5</td>
<td>kCl(2.0 mmol)</td>
<td>rt</td>
<td>23</td>
</tr>
</tbody>
</table>

Reaction conditions: phenylacetylene 1a (1.0 mmol), I₂ (2.2 mmol), NaCl (2.0 mmol) in 3 mL of DMSO at rt for 4 h.

Optimization table for S-methyl 2-oxo-2-phenylethanethioate 6a:

![Chemical structure]

<table>
<thead>
<tr>
<th>entry</th>
<th>1 (mmol)</th>
<th>I₂ (mmol)</th>
<th>reagent</th>
<th>Temp °C</th>
<th>%yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>TFA</td>
<td>rt</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>TFA</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.0</td>
<td>TFA</td>
<td>80</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.5</td>
<td>TFA</td>
<td>100</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>2</td>
<td>TFA</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>2.2</td>
<td>TFA</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>2.5</td>
<td>TFA</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>2.2</td>
<td>AcOH</td>
<td>100</td>
<td>27</td>
</tr>
</tbody>
</table>

Reaction condition: phenylacetylene 1a (1.0 mmol), I₂ (2.2 mmol), TFA (1.0 mmol) in 3 mL of DMSO at 100 °C for 4 h.
3. General procedure

a) For the synthesis of 2a-2k:

A reaction vessel was charged with arylacetylene 1 (1.0 mmol) and iodine (2.2 mmol) in 3 mL of DMSO solvent. The reaction mixture was stirred at 80 °C for 2h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃, and dried with Na₂SO₄ followed by removal of solvent under reduced pressure to afford crude product, which was purified by column chromatography on silica gel (100-200#) using hexane as an eluent. It afforded the corresponding products 2a-2k in good yields (69-79%).

b) For the synthesis of 3a-3k:

A reaction vessel was charged with arylacetylene 1 (1.0 mmol), I₂ (2.2 mmol), and liquid ammonia (0.746 mmol) in 3 mL of DMSO solvent. The reaction mixture was stirred at room temperature for 4 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃, and dried with Na₂SO₄, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane as an eluent. It afforded the corresponding products 3a-3k in good yields (67-83%).

c) For the synthesis of 4a-4k:

A reaction vessel was charged with arylacetylene 1 (1.0 mmol), I₂ (2.2 mmol), and HCl (2N, 0.5 ml) in 3 mL of DMSO solvent. The reaction mixture was stirred at room temperature for 16 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃, and dried with Na₂SO₄, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane and ethyl acetate (9.8:0.2) as an eluent. It afforded the corresponding products 4a-4k in good yields (67-79%).

d) For the synthesis of 5a-5k:

A reaction vessel was charged with arylacetylene 1 (1 mmol), I₂ (2.2 mmol) and NaCl (2 mmol) in 2 mL of DMSO solvent. The reaction mixture was stirred at room temperature for 4 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was
extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na$_2$SO$_3$ and dried with Na$_2$SO$_4$, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane and ethyl acetate (9.8:0.2) as an eluent. It afforded the corresponding products 5a-5k in good yields (66-83%).

(e) **For the synthesis of 6a-6f:**

A reaction vessel was charged with arylacetylene 1 (1 mmol), I$_2$ (2.2 mmol) and TFA (1.0 mmol) in 3 mL of DMSO solvent. The reaction mixture was stirred at 100 °C for 4 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na$_2$SO$_3$ and dried with Na$_2$SO$_4$, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane and ethyl acetate (9.9:0.1) as an eluent. It afforded the corresponding product 6a-6f in good (64-72%).

Gram Scale Reaction.

We have also conducted the same reaction in gram scale by using arylacetylenes 1 (9.8 mmol), I$_2$ (21.6 mmol) and TFA (9.8 mmol) in 30 mL of DMSO solvent. The reaction mixture was stirred at 100 °C for 8 h and isolated the desired product 6a in 57% yield.

(f) **For the synthesis of A**$^{[1]}$: To a reaction mixture of phenylacetylene 1a (0.3 mmol) and TIBA (0.36 mmol), PIDA (0.3 mmol) was added in portions over a period of 20 min in CH$_3$CN (3 mL), and the reaction mixture was stirred at room temperature for 24 h. The reaction progress was monitored by TLC. Upon completion, the reaction mixture was quenched with saturated aqueous solution of Na$_2$S$_2$O$_3$, washed with brine, extracted with ethylacetate, and dried over anhydrous Na$_2$SO$_4$. After filtration, the solvent was removed under reduced pressure to afford the crude product, which was purified by column chromatography using hexane.

4. Procedures of control experiments:

Control experiment with iodoethynylbenzene A:

Procedure for experiment 1: A reaction vessel was charged with iodoethynylbenzene A (1.0 mmol) and I$_2$ (2.2 mmol) in 3 mL of DMSO solvent and stirred 80 °C for 2 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na$_2$SO$_3$ and dried with Na$_2$SO$_4$, followed by removal of solvent under reduced pressure. The crude mixture was purified by column.
chromatography on silica gel (100-200#) using hexane as an eluent. It afforded the corresponding product 2a in good (83%).

Procedure for experiment 2: A reaction vessel was charged with iodoethynylbenzene A (1mmol) and I₂ (2.2 mmol) in 3mL of DMSO solvent and stirred at rt for 4h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃ and dried with Na₂SO₄, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane as an eluent. It afforded the corresponding product 3a in good (86%).

Procedure for experiment 3: A reaction vessel was charged with iodoethynylbenzene A (1mmol), I₂ (2.2 mmol) and HCl (2N, 0.5ml) in 3 mL of DMSO solvent and stirred rt for 16 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃ and dried with Na₂SO₄, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane and ethylacetate (9.8:0.2) as an eluent. It afforded the corresponding product 4a in good (77%).

Procedure for experiment 4: A reaction vessel was charged with iodoethynylbenzene A (1mmol), I₂ (2.2 mmol) and NaCl (2.0 mmol) in 3mL of DMSO solvent and stirred at rt for 4h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃ and dried with Na₂SO₄, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane and ethylacetate (9.8:0.2) as an eluent. It afforded the corresponding product 5a in good (81%).

Procedure for experiment 5: A reaction vessel was charged with iodoethynylbenzene A (1.0 mmol), I₂ (2.2 mmol) and TFA (1.0 mmol) in 3mL of DMSO solvent and stirred 100°C for 4 h. After completion of the reaction, confirmed by thin layer chromatography, the reaction mixture was extracted with ethyl acetate and ice chilled water, quenched with saturated solution of Na₂SO₃ and dried with Na₂SO₄, followed by removal of solvent under reduced pressure. The crude mixture was purified by column chromatography on silica gel (100-200#) using hexane and ethyl acetate (9.9:0.1) as an eluent. It afforded the corresponding product 6a in good (74%).
Procedure for experiment 6: A reaction vessel was charged with phenylacetylene 1a (1.0 mmol), I₂ (1 mmol) and TFA (1 mmol) in 3mL of DMSO solvent and stirred at 100 °C for 4 h. It was found that both E & Z isomers of 8 were formed, with collective yield of 71%.

6. Characterization data for compounds

2a. (2,2-diido-1-phenylvinyl)(methyl)sulfane

Yellow solid (311 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.34 (m, 3H), 7.21 – 7.12 (m, 2H), 1.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.13, 141.00, 128.78, 128.55, 128.52, 19.32, 6.90. IR (CHCl₃, cm⁻¹) ν: 3410, 2920, 2850, 1649, 1422, 1019, 771. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₁H₉I₂S₄02.8509 found 402.8513.

2b. (2,2-diido-1-(p-tolyl)vinyl)(methyl)sulfane

Yellow solid (279 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.9 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 2.38 (s, 3H), 1.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.30, 138.53, 137.98, 129.48, 128.39, 21.42, 19.45, 6.87. IR (CHCl₃, cm⁻¹) ν, 3386, 2919, 2850, 1659, 1649, 1218, 771. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₀H₁₁I₂S₄16.8665 found 416.8661.

2c. (2,2-diido-1-(4-pentylphenyl)vinyl)(methyl)sulfane

Yellow semi solid (184 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H), 7.26 – 2.58 (m, 2H), 2.68 – 1.59 (m, 4H), 1.38 – 1.30 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.37, 143.56, 138.14, 128.72, 128.35, 35.76, 31.53, 30.81, 22.50, 19.42, 14.02, 6.76. IR (CHCl₃, cm⁻¹) ν, 3378, 2923, 2853, 1606, 1430, 1020, 728, 771. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₄H₁₉I₂S₄72.9291 found 472.9297.

2d. (2,2-diido-1-(4-propylphenyl)vinyl)(methyl)sulfane

Yellow liquid (241 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H), 2.60 (dd, J = 15.5, 7.8 Hz, 2H), 1.91 (s, 3H), 1.66 (dt, J = 14.3, 7.2 Hz, 2H), 0.99 – 0.89 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.25 (s), 138.15 (s), 128.82 (s), 128.36 (s), 128.29 (s), 37.81 (s), 24.24 (s), 19.46 (s), 13.79 (s), 6.80 (s). IR (CHCl₃, cm⁻¹) ν, 3328, 2919, 2809, 1598, 1448, 1067, 765. HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₁₄I₂NaS₄66.8798 found 466.8805.

2e. (1-(4-(tert-butyl)phenyl)-2,2-diiodovinyl)(methyl)sulfane
Yellow oil (229 mg, 79% yield); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.46 – 7.38 (m, 2H), 7.09 (d, \(J = 8.4\) Hz, 2H), 1.90 (s, 3H), 1.34 (s, 9H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 152.34, 151.70, 137.88, 128.15, 125.58, 34.77, 31.29, 19.41, 6.85. IR (CHCl\(_3\), cm\(^{-1}\)) ν 3401, 3323, 2834, 1577, 1390, 1050, 788, 709. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{13}\)H\(_{17}\)I\(_2\)S 458.9135 found 458.9127.

2f. (2,2-diiodo-1-(4-methoxyphenyl)vinyl)(methyl)sulfane

Yellow semi solid (268 mg, 82% yield); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.13 – 7.04 (m, 2H), 6.96 – 6.87 (m, 2H), 3.84 (s, 3H), 1.92 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.59, 152.11, 133.16, 130.00, 114.12, 55.31, 19.53, 7.33. IR (CHCl\(_3\), cm\(^{-1}\)) ν 3407, 3361, 2927, 2855, 1594, 1427, 1046, 692. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{10}\)H\(_{11}\)I\(_2\)OS 432.8614 found 432.8612.

2g. (2,2-diiodo-1-(3-methoxyphenyl)vinyl)(methyl)sulfane

Yellow oil (255 mg, 78% yield); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.31 (t, \(J = 7.9\) Hz, 1H), 6.92 – 6.87 (m, 1H), 6.74 (d, \(J = 7.6\) Hz, 1H), 6.71 – 6.68 (m, 1H), 3.82 (s, 3H), 1.93 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.83, 151.87, 142.12, 129.83, 120.90, 114.39, 113.85, 55.46, 19.36, 7.13. IR (CHCl\(_3\), cm\(^{-1}\)) ν 3377, 3061, 2919, 2831, 1594, 1433, 1011, 732. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{10}\)H\(_{11}\)I\(_2\)OS 432.8614 found 432.8618.

2h. (1-(4-fluorophenyl)-2,2-diiodovinyl)(methyl)sulfane

Yellow liquid (255 mg, 73% yield); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.21 – 7.04 (m, 4H), 1.92 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 162.47 (d, \(J = 249.2\) Hz), 151.08 (s), 136.86 (d, \(J = 3.5\) Hz), 130.44 (d, \(J = 8.3\) Hz), 115.95 (d, \(J = 21.8\) Hz), 19.39 (s), 8.18 (s). IR (CHCl\(_3\), cm\(^{-1}\)) ν 3584, 3386, 2919, 2849, 1600, 1496, 1223, 1155, 839, 811.

2i. (1-(4-bromophenyl)-2,2-diiodovinyl)(methyl)sulfane

Brown solid (190 mg, 71% yield); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.59 (d, \(J = 8.4\) Hz, 2H), 7.09 (d, \(J = 8.4\) Hz, 2H), 1.95 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 150.84 (s), 139.73 (s), 132.11 (s), 130.16
10.80 (s), 19.36 (s), 8.14 (s). IR (CHCl₃, cm⁻¹) ν, 3386, 2920, 2850, 1649, 1584, 1478, 1313, 1011, 825, 768. HRMS (TOF) m/z [M + H]+ Calcd for C₉H₈Br₂S₄80.7614 found 80.7609

2j. (1-(2-chlorophenyl)-2,2-diiodovinyl)(methyl)sulfane

Yellow oil (233 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 1H), 7.36 – 7.32 (m, 2H), 7.18 – 7.12 (m, 1H), 1.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.25 (s), 139.93 (s), 132.40 (s), 130.05 (s), 130.01 (s), 127.35 (s), 18.49 (s), 8.17 (s). IR (CHCl₃, cm⁻¹) ν, 3377, 2920, 2849, 1463, 1427, 1060, 748, 772, 665. HRMS (TOF) m/z [M + H]+ Calcd for C₉H₈ClI₂S₄36.8119 found 436.8114.

2k. (2,2-diiodo-1-(2-(trifluoromethyl)phenyl)vinyl)(methyl)sulfane

Yellow solid (190 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.9 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.71 (s), 139.35 (s), 132.46 (s), 129.85 (d, J = 183.4 Hz), 128.02 (s), 127.78 (s), 127.13 (dd, J = 9.5, 4.8 Hz), 123.30 (d, J = 274.6 Hz), 18.99 (s), 6.65 (s). IR (CHCl₃, cm⁻¹) ν, 3385, 2925, 2850, 1443, 1313, 1172, 1130, 1035, 767. HRMS (TOF) m/z [M + H]+ Calcd for C₁₀H₈F₃I₂S₄70.8383 found 470.8381.

3a. (1,2,2-triiodovinyl)benzene

Pale Yellow solid (382 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.32 (m, 3H), 7.32 – 7.27 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.71, 128.75, 128.62, 127.42, 112.47, 22.50.

3b. 1-methyl-4-(1,2,2-triiodovinyl)benzene

Pale yellow solid (354 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 4H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.96, 138.87, 129.26, 127.38, 112.86, 21.97, 21.77.

3c. 1-methyl-2-(1,2,2-triiodovinyl)benzene
3d. 1-methyl-3-(1,2,2-triiodovinyl)benzene

Pale yellow solid (333 mg, 78% yield); \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.28 (dd, \(J = 10.1, 4.8\) Hz, 1H), 7.16 (d, \(J = 7.6\) Hz, 1H), 7.09 (d, \(J = 9.9\) Hz, 2H), 2.39 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 147.58 (s), 138.41 (s), 129.56 (s), 128.47 (s), 127.91 (s), 124.46 (s), 112.78 (s), 22.35 (s), 21.45 (s).

3e. 1-ethyl-4-(1,2,2-triiodovinyl)benzene

Yellow semi solid (290 mg, 74% yield); \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.22 (s, 4H), 2.68 (q, \(J = 7.6\) Hz, 2H), 1.28 (t, \(J = 7.6\) Hz, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 145.06 (s), 145.03 (s), 128.05 (s), 127.43 (s), 119.79, 114.70, 112.81, 112.14, 55.43, 22.31.

3f. 1-methoxy-3-(1,2,2-triiodovinyl)benzene

Pale yellow solid (317 mg, 82% yield); \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.29 (d, \(J = 8.0\) Hz, 1H), 6.93 − 6.83 (m, 2H), 6.82 − 6.78 (m, 1H), 3.85 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.40, 148.80, 129.65, 114.70, 112.81, 112.14, 55.43, 22.31.

3g. 1-methoxy-4-(1,2,2-triiodovinyl)benzene\(^{[1]}\)

Black solid (325 mg, 84% yield); \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.25 (d, \(J = 8.7\) Hz, 2H), 6.89 (d, \(J = 8.7\) Hz, 2H), 3.85 (s, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.68 (s), 140.24 (s), 129.08 (s), 113.89 (s), 112.84 (s), 55.33 (s), 22.31 (s).

3h. 1-fluoro-4-(1,2,2-triiodovinyl)benzene

Yellow solid (346 mg, 81% yield); \(^1^H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.30 − 7.20 (m, 2H), 7.16 − 7.10 (m, 2H), 2.24 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 146.83 (s), 133.91 (s), 130.84 (s), 129.06 (s), 126.95 (s), 126.45 (s), 113.07 (s), 23.90 (s), 19.71 (s).
Pale yellow solid (287 mg, 69% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.35 – 7.24 (m, 2H), 7.08 (m, J = 8.8, 5.9, 2.5 Hz, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 162.37 (d, J = 250.0 Hz), 143.80 (d, J = 3.5 Hz), 129.51 (d, J = 8.5 Hz), 115.75 (d, J = 22.0 Hz), 111.24 (s), 23.61 (s).

3i. 1-trifluoromethyl-4-(1,2,2-triiodovinyl)benzene

Red solid (229 mg, 71% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 150.94 (s), 130.73 (s), 127.89 (s), 125.74 (dd, J = 7.5, 3.8 Hz), 123.75 (d, J = 272.5 Hz), 110.07 (s), 23.56 (s).

3j. 1-chloro-4-(1,2,2-triiodovinyl)benzene

Yellow solid (273 mg, 72% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.34 (m, 2H), 7.27 – 7.20 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 146.11, 134.71, 128.94, 128.91, 110.89, 23.42.

3k. 1-(trifluoromethyl)-2-(1,2,2-triiodovinyl)benzene

Brown solid (216 mg, 67% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (d, J = 7.9 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.32 – 7.26 (m, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 145.71 (d, J = 1.6 Hz), 132.49 (s), 130.44 (s), 129.80 (s), 129.05 (d, J = 2.4 Hz), 127.06 (q, J = 4.9 Hz), 126.22 (d, J = 31.1 Hz), 123.40 (d, J = 274.4 Hz), 25.96 (s).

4a. 2-chloro-1-phenylethanone

Light yellow oil (109 mg, 72%); 1H NMR (400 MHz, CDCl$_3$) δ 7.98 (dd, J = 8.2, 1.0 Hz, 2H), 7.65 (dd, J = 10.5, 4.3 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 4.74 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 191.12 (s), 134.31 (s), 134.01 (s), 128.92 (s), 128.55 (s), 45.96 (s).

4b. 2-chloro-1-(p-tolyl)ethanone
White solid (114 mg, 79% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.14 – 8.05 (m, 2H), 7.70 – 7.62 (m, 2H), 7.53 (dd, J = 11.0, 4.6 Hz, 2H), 6.69 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 190.74 (s), 145.10 (s), 131.74 (s), 129.61 (s), 128.65 (s), 46.04 (s), 21.79 (s).

4c. 2-chloro-1-(m-tolyl)ethanone$^{[5]}$

Yellow liquid (112 mg, 77% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.14 – 8.05 (m, 2H), 7.70 – 7.62 (m, 2H), 7.53 (dd, J = 11.0, 4.6 Hz, 2H), 6.69 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 190.74 (s), 145.10 (s), 131.74 (s), 129.61 (s), 128.65 (s), 46.04 (s), 21.79 (s).

4d. 2-chloro-1-(o-tolyl)ethan-1-one$^{[5]}$

Colourless liquid (109 mg 75% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 4.67 (s, 2H), 2.56 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 194.22 (s), 139.53 (s), 134.51 (s), 132.41 (s), 132.41 (s), 128.70 (s), 125.87 (s), 47.97 (s), 21.42 (s).

4e. 1-(4-butylphenyl)-2-chloroethan-1-one

Colourless liquid (104 mg, 78% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.90 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 4.72 (s, 2H), 2.77 – 2.68 (m, 2H), 1.66 (dd, J = 15.3, 7.5 Hz, 2H), 1.45 – 1.33 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 190.76 (s), 149.96 (s), 132.02 (s), 128.95 (s), 128.70 (s), 45.84 (s), 35.76 (s), 33.12 (s), 22.30 (s), 13.84 (s).

4f. 2-chloro-1-(4-methoxyphenyl)ethanone$^{[3]}$

Yellow solid (106 mg, 76% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.01 – 7.93 (m, 2H), 7.03 – 6.93 (m, 2H), 4.67 (s, 2H), 3.91 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 189.69 (s), 164.18 (s), 130.96 (s), 121.00 (s), 120.56 (s), 112.76 (s), 55.60 (s), 45.74 (s).

4g. 2-chloro-1-(3-methoxyphenyl)ethanone$^{[6]}$

White solid (103 mg, 74% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.59 – 7.50 (m, 2H), 7.43 (t, J = 7.9 Hz, 1H), 7.19 (dd, J = 8.2, 2.5 Hz, 1H), 4.74 (s, 2H), 3.90 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 190.94 (s), 160.01 (s), 135.53 (s), 129.91 (s), 121.00 (s), 120.56 (s), 112.76 (s), 55.55 (s), 46.18 (s).

4h. 1-(4-bromophenyl)-2-chloroethan-1-one$^{[3]}$
White solid (92 mg, 71% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.95 – 7.80 (m, 2H), 7.73 – 7.60 (m, 2H), 4.68 (s, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 190.28 (s), 132.90 (s), 132.30 (s), 130.07 (s), 129.40 (s), 45.62 (s).

4i. 2-chloro-1-(4-chlorophenyl)ethanone5

White solid (95 mg, 69% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.01 – 7.87 (m, 2H), 7.56 – 7.45 (m, 2H), 4.68 (s, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 190.07 (s), 140.63 (s), 132.49 (s), 130.01 (s), 129.30 (s), 45.65 (s).

4j. 2-chloro-1-(4-fluorophenyl)ethanone5

White solid (96 mg, 67% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.09 – 7.96 (m, 2H), 7.26 – 7.13 (m, 2H), 4.69 (s, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 189.68 (s), 166.23 (d, $J = 256.6$ Hz), 131.37 (d, $J = 9.5$ Hz), 130.70 (d, $J = 3.0$ Hz), 116.15 (d, $J = 22.1$ Hz), 45.50 (s).

4k. 2-chloro-1-(4-(trifluoromethyl)phenyl)ethan-1-one5

White solid (91 mg, 70% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.11 (d, $J = 8.3$ Hz, 2H), 7.80 (d, $J = 8.3$ Hz, 2H), 4.74 (s, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 190.36 (s), 136.82 (s), 135.25 (q, $J = 33.0$ Hz), 129.00 (s), 126.01 (q, $J = 3.7$ Hz), 123.38 (d, $J = 272.8$ Hz), 45.75 (s).

5a. dichloro-1-phenylethanone7

Yellow oil (143 mg, 78% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (dd, $J = 8.4$, 1.1 Hz, 2H), 7.68 (t, $J = 7.4$ Hz, 1H), 7.55 (t, $J = 7.8$ Hz, 2H), 6.71 (s, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 185.92, 134.58, 131.34, 129.76, 128.94, 67.79.

5b. 2,2-dichloro-1-(p-tolyl)ethanone7

Colourless oil (144 mg, 83% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.98 (d, $J = 8.3$ Hz, 2H), 7.31 (d, $J = 8.2$ Hz, 2H), 6.68 (s, 1H), 2.44 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 185.59, 145.86, 129.84, 129.66, 128.81, 67.87, 21.84.

5c. 2,2-dichloro-1-(4-propylphenyl)ethanone
Yellow solid (126 mg, 79% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.67 (s, 1H), 2.81 – 2.60 (m, 2H), 1.80 – 1.62 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 185.62, 150.50, 129.91, 129.06, 128.99, 67.84, 38.16, 24.08, 13.76.

5d. 2,2-dichloro-1-(4-pentylphenyl)ethanone$^{[9]}$

Yellow solid (144 mg, 76% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.68 (s, 1H), 2.73 – 2.62 (m, 2H), 1.70 – 1.59 (m, 2H), 1.34 (dd, J = 7.2, 3.7 Hz, 4H), 0.90 (t, J = 6.9 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 185.61, 150.78, 129.91, 129.02, 128.96, 67.83, 36.11, 31.43, 30.62, 24.27, 13.95.

5e. 1-(4-(tert-butyl)phenyl)-2,2-dichloroethanone

Yellow solid (125 mg, 81% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 6.68 (s, 1H), 1.36 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 185.81 (s), 160.02 (s), 132.69 (s), 129.87 (s), 122.06 (s), 121.14 (s), 114.11 (s), 67.74 (s), 55.57 (s).

5f. 2,2-dichloro-1-(3-methoxyphenyl)ethanone$^{[8]}$

Yellow solid (123 mg, 75% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.69 – 7.62 (m, 1H), 7.62 – 7.55 (m, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.24 – 7.16 (m, 1H), 6.68 (s, 1H), 3.88 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 185.81, 160.02, 132.69, 129.87, 122.06, 121.14, 114.11, 77.34, 77.02, 76.70, 67.74, 55.57.

5g. 2,2-dichloro-1-(4-methoxyphenyl)ethanone$^{[7]}$

Yellow liquid (127 mg, 77% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.06 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 6.65 (s, 1H), 3.89 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 184.62, 164.68, 132.25, 123.98, 114.24, 67.91, 55.65.

5h. 2,2-dichloro-1-(4-(pentyloxy)phenyl)ethanone
Yellow solid (105 mg, 72% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 9.0 Hz, 2H), 6.99 (d, J = 9.0 Hz, 2H), 6.67 (s, 1H), 4.07 (t, J = 6.5 Hz, 2H), 1.90 – 1.79 (m, 2H), 1.59 – 1.39 (m, 4H), 0.97 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 184.60, 164.31, 132.27, 123.61, 114.64, 68.51, 67.89, 28.72, 28.10, 22.43, 14.03.

5i. 2,2-dichloro-1-(4-fluorophenyl)ethanone$^{[7]}$

Yellow liquid (118mg, 69% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (m, J = 8.2, 5.2, 2.6 Hz, 2H), 7.24 – 7.16 (m, 2H), 6.61 (s, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 184.58 (s), 166.46 (d, J = 258.1 Hz), 132.73 (d, J = 9.6 Hz), 127.59 (d, J = 3.0 Hz), 116.23 (d, J = 22.2 Hz), 67.84 (s).

5j. 2,2-dichloro-1-(4-chlorophenyl)ethanone$^{[7]}$

Yellow liquid (115 mg, 71% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.13 – 8.03 (m, 2H), 7.58 – 7.49 (m, 2H), 6.62 (s, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 184.95 (s), 141.25 (s), 131.25 (s), 129.48 (s), 129.31 (s), 67.78 (s).

5k. 2,2-dichloro-1-(4-(trifluoromethyl)phenyl)ethanone$^{[7b]}$

Colourless liquid (99 mg, 66% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.26 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 6.65 (s, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 185.13 (s), 135.62 (q, J = 33.0 Hz), 133.99 (s), 130.27 (s), 125.93 (q, J = 3.6 Hz), 123.28 (d, J = 273.0 Hz), 67.79 (s).

6a. S-methyl 2-oxo-2-phenylethanethioate

Yellow oil (122 mg, 69% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.22 – 8.12 (m, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, 2H), 2.49 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 193.26 (s), 186.10 (s), 134.84 (s), 131.69 (s), 130.79 (s), 128.83 (s), 11.45 (s).IR (CHCl$_3$, cm$^{-1}$) v; 3357,2920,2850,1674,1595,1449,1266,1068, 826. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_9$H$_9$O$_2$S 181.0318 found 181.0324.

6b. S-methyl 2-oxo-2-(p-tolyl)ethanethioate
Yellow oil (119 mg, 71% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 2.48 (s, 3H), 2.47 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 193.55 (s), 185.71 (s), 146.30 (s), 130.97 (s), 129.63 (s), 129.03 (s), 21.97 (s), 11.52 (s). IR (CHCl$_3$, cm$^{-1}$) ν: 3329, 2920, 2849, 1680, 1604, 1410, 1313, 1270, 1073, 774, 845. HRMS (TOF) m/z $[M + Na]^+$Calcd for C$_{10}$H$_{10}$NaO$_2$S 217.0294 found 217.0288.

6c. S-methyl 2-oxo-2-(m-tolyl)ethanethioate

Yellow oil (120 mg, 72% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.97 (d, J = 7.1 Hz, 1H), 7.50 (d, J = 7.3 Hz, 1H), 7.41 (dd, J = 11.2, 4.9 Hz, 2H), 2.49 (s, 3H), 2.45 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 193.44 (s), 186.44 (s), 138.78 (s), 135.78 (s), 131.56 (s), 131.11 (s), 128.75 (s), 128.11(s),21.34(s),11.52(s). IR (CHCl$_3$, cm$^{-1}$) ν: 3330, 2924, 2851, 1677, 1584, 1453, 1276, 1083, 900. HRMS (TOF) m/z $[M + Na]^+$Calcd for C$_{10}$H$_{10}$NaO$_2$S 217.0294 found 217.0291.

6d. S-methyl 2-(4-ethylphenyl)-2-oxoethanethioate

Yellow oil (112 mg, 70% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.10 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 2.76 (q, J = 7.6 Hz, 2H), 2.48 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 193.55 (s), 185.75 (s), 152.37 (s), 131.09 (s), 129.23 (s), 128.46 (s), 29.19 (s), 15.07 (s), 11.51 (s). IR (CHCl$_3$, cm$^{-1}$) ν: 3328, 2968, 2930, 1680, 1604, 1416, 1312, 1269, 1184, 1074, 829. HRMS (TOF) m/z $[M + Na]^+$Calcd for C$_{11}$H$_{12}$NaO$_2$S 231.0450 found 231.0454.

6e. S-methyl 2-(4-fluorophenyl)-2-oxoethanethioate

Yellow oil (110 mg, 67% yield); 1H NMR (400 MHz, CDCl$_3$) δ 8.30 – 8.21 (m, 2H), 7.25 – 7.16 (m, 2H), 2.49 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 193.18 (s), 184.19 (s), 166.90 (d, J = 258.6 Hz), 133.80 (d, J = 9.7 Hz), 128.06 (d, J = 2.8 Hz), 116.23 (d, J = 22.0 Hz), 11.58 (s). IR (CHCl$_3$, cm$^{-1}$) ν: 3393, 2926, 2851, 1680, 1596, 1505, 1443, 1239, 845. HRMS (TOF) m/z $[M + H]^+$Calcd for C$_{9}$H$_{8}$FO$_2$S199.0224 found 199.0223.

6f. S-methyl 2-oxo-2-(o-tolyl)ethanethioate
Yellow oil (107 mg, 64% yield); 1H NMR (400 MHz, CDCl$_3$) δ 7.79 (d, $J = 7.7$ Hz, 1H), 7.51 (t, $J = 7.5$ Hz, 1H), 7.33 (t, $J = 8.3$ Hz, 2H), 2.58 (s, 3H), 2.49 (s, 3H).13C NMR (126 MHz, CDCl$_3$) δ 193.83 (s), 189.02 (s), 141.14 (s), 133.41 (s), 132.16 (s), 130.89 (s), 125.65 (s), 21.31 (s), 11.58 (s).IR (CHCl$_3$, cm$^{-1}$)ν: 3331, 2851, 2927, 1681, 1455, 1249, 1060, 844. HRMS (TOF) m/z [M + Na]$^+$ Calcd for C$_{10}$H$_{10}$NaO$_2$S 217.0294 found 217.0297.

A. (iodoethynyl)benzene$^{[1]}$

Yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.52 – 7.47 (m, 1H), 7.40 – 7.33 (m, 2H).

8. (Z)-2-(methylthio)-1,4-diphenylbut-2-ene-1,4-dione$^{[2]}$

1H NMR (400 MHz, CDCl$_3$) δ 8.13 – 8.07 (m, 1H), 8.01 – 7.94 (m, 1H), 7.70 (t, $J = 7.4$ Hz, 1H), 7.56 (t, $J = 7.8$ Hz, 2H), 7.47 (t, $J = 7.5$ Hz, 1H), 7.12 (s, 1H), 2.19 (s, 2H), 1.62.

References:

1H and 13C NMR spectra of all compounds.

1H and 13C NMR spectra of 2a (CDCl$_3$)
1H and 13C NMR spectra of 2b (CDCl$_3$)
\(^1\)H and \(^{13}\)C NMR spectra of 2c (CDCl\textsubscript{3})
1H and 13C NMR spectra of 2d (CDCl$_3$)
1H and 13C NMR spectra of 2e (CDCl$_3$)
^1H and ^{13}C NMR spectra of 2f (CDCl$_3$)
1H and 13C NMR spectra of 2g (CDCl$_3$)
1H and 13C NMR spectra of 2h (CDCl$_3$)
1H and 13C NMR spectra of 2i (CDCl$_3$)
1H and 13C NMR spectra of 2j (CDCl$_3$)
1H and 13C NMR spectra of 2k (CDCl$_3$)
1H and 13C NMR spectra of 3a (CDCl$_3$)
1H and 13C NMR spectra of 3b (CDCl$_3$)
1H and 13C NMR spectra of 3c (CDCl$_3$)
1H and 13C NMR spectra of 3d (CDCl$_3$)
1H and 13C NMR spectra of 3e (CDCl$_3$)
1H and 13C NMR spectra of 3f (CDCl$_3$)
1H and 13C NMR spectra of 3g (CDCl$_3$)
^{1}H and 13C NMR spectra of 3h (CDCl$_3$)
1H and 13C NMR spectra of 3i (CDCl$_3$)
1H and 13C NMR spectra of 3j (CDCl$_3$)
1H and 13C NMR spectra of 3k (CDCl$_3$)
1H and 13C NMR spectra of 4a (CDCl$_3$)
1H and 13C NMR spectra of 4b (CDCl$_3$)
1H and 13C NMR spectra of 4c (CDCl$_3$)
1H and 13C NMR spectra of 4d (CDCl$_3$)
1H and 13C NMR spectra of 4e (CDCl$_3$)
1H and 13C NMR spectra of 4f (CDCl$_3$)
1H and 13C NMR spectra of 4g (CDCl$_3$)
1H and 13C NMR spectra of 4h (CDCl$_3$)
1H and 13C NMR spectra of 4i (CDCl$_3$)
1H and 13C NMR spectra of 4j (CDCl$_3$)
1H and 13C NMR spectra of 4k (CDCl$_3$)
1H and 13C NMR spectra of 5a (CDCl$_3$)
1H and 13C NMR spectra of 5b (CDCl$_3$)
1H and 13C NMR spectra of 5c (CDCl$_3$)
1H and 13C NMR spectra of 5d (CDCl$_3$)
1H and 13C NMR spectra of 5e (CDCl$_3$)
1H and 13C NMR spectra of 5f (CDCl$_3$)
1H and 13C NMR spectra of 5g (CDCl$_3$)

[Diagram of NMR spectra with chemical shifts and assignments]

S59
1H and 13C NMR spectra of 5h (CDCl$_3$)
1H and 13C NMR spectra of 5i (CDCl$_3$)
1H and 13C NMR spectra of 5j (CDCl$_3$)
1H and 13C NMR spectra of 5k (CDCl$_3$)
1H and 13C NMR spectra of 6a (CDCl$_3$)
1H and 13C NMR spectra of 6b (CDCl$_3$)
1H and 13C NMR spectra of 6c (CDCl$_3$)
$^{1} \text{H}$ and $^{13} \text{C}$ NMR spectra of 6d (CDCl$_3$)
^{1}H and ^{13}C NMR spectra of 6e (CDCl$_3$)
1H and 13C NMR spectra of 6f (CDCl$_3$)
1H NMR spectra of A (CDCl$_3$)

1H NMR spectra of 8 (CDCl$_3$)