Supplementary Information for

Artificial Solid Interphase with Polymers of Intrinsic Microporosity for Highly Stable Li Metal Anode

Gi Hyeon Moon†, Hyun Jong Kim†, Il Seok Chae, Seul Chan Park, Byung Su Kim, Jaeyoung Jang, Hansu Kim*, Yong Soo Kang*

Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea

†These two authors contributed equally to this work

*Yong Soo Kang : kangys@hanyang.ac.kr

*Hansu Kim : khansu@hanyang.ac.kr
Estimated mass of PIM-1 on Li metal

There is theoretical prediction of wet films thickness, which corresponds to the amount of loaded coating solution after doctor-blade method.51 Wet-film thickness can be obtained by the relationship as below

\[
D = \frac{1}{2} h \left(1 + \frac{h^2 P}{6 \eta UL} \right)
\]

D = Wet film thickness

h = Height of blade (50 \, \mu m)

P = Pressure difference between top of solution and bottom of solution (43.5 Pa)

\rightarrow Pressure difference was calculated by multiplying density of solution (0.89 g/cm3, almost same to that of tetrahydrofuran), acceleration of gravity, height of blade.

\eta = Viscosity of solution (0.48 cP, almost same to that of tetrahydrofuran)

U = Constant speed of blading (0.1 m/s)

L = Length of the plate (4 cm)

Wet-film thickness of PIM-1 layer based on the above-equation and coating condition was estimated to be as 25.5 \, \mu m. Based on this wet-film thickness, the areal mass of PIM-1 layer with respect to the concentration of coating solution could be estimated as shown in Table S1.
Table S1. Estimated mass of PIM-1 per area based on calculated thickness of wet film

<table>
<thead>
<tr>
<th>Weight Percent of PIM-1 solution (%)</th>
<th>Estimated mass of PIM-1 per area (μg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.3</td>
</tr>
<tr>
<td>0.05</td>
<td>11.3</td>
</tr>
<tr>
<td>0.1</td>
<td>22.7</td>
</tr>
<tr>
<td>0.5</td>
<td>113.5</td>
</tr>
</tbody>
</table>
Figure S1. Top view images of bare Li metal (a) and 0.01 wt%, 0.1 wt% (b,c) PIM-1 coated Li metal before cycle test.
Figure S2. SEM images of (a) bare Cu foil and (b) PIM-1 0.1 wt% coated Cu foil after first Li deposition under 3.0 mA cm$^{-2}$ at 1.5 mA h cm$^{-2}$.

After Li deposition on bare Cu foil (Fig. S2a), we found dendritic growth of Li deposits formed on the Cu foil, while PIM-1 coated Cu foil showed a smooth electrodeposited Li metal on the Cu foil (Fig. S2b).
References