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Supporting Information

General Considerations

'H NMR spectra were recorded on a Bruker AV300 or AV400 spectrometer at 300 MHz or 400 MHz
respectively and referenced to residual solvent. 3C NMR spectra were recorded using the same spec-
trometers at 75 MHz or 101 MHz respectively. Chemical shifts (& in ppm) were referenced to tetrame-
thylsilane (TMS) or to residual solvent peaks (CDCls at 84 7.26 ppm and 8¢ at 77.0 ppm). *°F NMR were
recorded using the same spectrometers at 282 MHz or 376 MHz respectively. J values are given in Hz
ands, d, t, q, dd, ddd and m are abbreviations corresponding to singlet, doublet, triplet, quartet, dou-
blet of doublets, doublet of doublets of doublets and multiplet respectively. Mass spectra were ob-
tained at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Infrared spectra
were obtained on Perkin-Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory, deposited neat
or as a chloroform solution to a diamond/ZnSe plate.

Column chromatography was carried out using Matrix silica gel 60 from Fluorochem and TLC per-
formed using Merck silica gel 60 F,s4 pre-coated sheets and visualised by UV (254 nm) and/or aqueous
acidic KMnOQa. Anhydrous solvents were obtained from a MBRAUN SPS-800 solvent purification system
(SPS) and stored under an argon atmosphere until use. Arylboronic acids were bought from Sigma-
Aldrich or Fluorochem and recrystallized from water prior to use unless otherwise stated. Arylborox-
ines were obtained by dehydrating boronic acids by heating the corresponding boronic acid under
vacuum. Benzyl bromides other than those whose syntheses are detailed here were obtained from a
number of commercial sources and were used without further purification. Unless otherwise stated,
photoredox reactions were carried out under argon atmosphere. The reaction mixture was sparged
with argon for 5 min before use. Light irradiation was performed using blue LEDs (1.5 Watt/foot). The
light source was placed ca 10 cm away from the reaction vessel, to prevent excess heating. We found
that the reactions are most reproducible when only one reaction vessel is irradiated per setup, to
allow maximum light penetration.



Selected Optimisation Tables

Unless otherwise stated, the reaction mixture was sparged with argon for 5 min before the
reaction commenced and reactions were carried out in oven dried 1 dram screw cap vials. p-
tolylboronic acid was recrystallized from water unless otherwise stated.

Initial Screens

Solvent Optimisation

Br/\©\
NO

2
4a K>CO3 (1 equiv.)
3 equiv. Cul (20 mol%)

O,N
. Ru(bpy)s(PF); (2.5 mol%) O
Solvent, 50 °C, 16 h NO, O
/@/B(OH)Z Blue LEDs 5aa 7a NO
2

1a
1 equiv.
Entry Solvent 5aa (%)? 4a (%)? 7a (%)>P
1 DCM Trace N/Af 25
2 THF 8 N/A' 31
3 Toluene 23 N/Af 17
4 DMF 8 N/Af 41
5¢ MeCN 10 N/Af 24
6de NMP Trace Trace 23
7de DMSO 8% 5% 26
8¢ Toluene 29 28 20

Reaction carried out on a 0.1 mmol scale (0.1 M unless stated otherwise).?Yield determined by *H NMR analysis
using mesitylene as an internal standard. ®Yields with respect to theoretical maximum formation of 7a. “Reaction
carried out at r.t. 930 mol% Cul, 1 mol% Ru(bpy)s(PFs)2, 4 equiv. KF. ®Stoichiometry of benzyl bromide and bo-
ronic acid reversed. ‘Not applicable as 4a is in excess.

Solvent screen showed toluene to be by far the best solvent.



Base Optimisation
p-Tolylboronic acid 1a (3 equiv.)

Base
Cul (30 mol%) O2N
Br/\©\ Ru(bPy)s(PFe), (2.5 mol%) O
NO,  Toluene, 50 °C, 16 h NO, O
4a Blue LEDs 7a
NO,
Entry Base Equiv. 5aa (%)  4a (%)? 7a (%)*°
1 - - 0 100 0
2 K2CO3 3 29 28 20
3 KOtBu 3 19 24 16
4 DMAP 3 0 0 0
5 LiF 3 0 100 0
6 NaF 3 0 95 0
7 NH4F 3 0 45 26
8 CsF 3 35 30 18
9 KF 3 37 13 22
10 KF 1 17 54 14
11 KF 6 45 0 28

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). 2Yield determined by *H NMR analysis
using mesitylene as an internal standard. Yields with respect to theoretical maximum formation of 7a.

Base screen identified KF to be the best base.

The increase in yield of 5aa when moving from LiF (0%) and NaF (0%) to CsF (35%) to KF (45%)
indicates that ion pairing plays a role, with the tighter LiF/KF pairs showing no reactivity while
the less tightly bound CsF and KF progressively show more reactivity.



Other parameters

p-Tolylboronic acid 1a (3 equiv.)

KF (3 equiv.)
Cul (30 mol%)
BrA@ Ru(bpy)s(PF)z (2.5 mol%) O
NO, Toluene, 50 °C, 16 h NO, O
4a Blue LEDs 7a
NO,

Entry Parameter Saa (%) 4a (%) 7a(%)*°
1 Control 37 13 22
2 1 mol% Ru 40 7 26
3 5 mol% Ru 31 11 20
4 1 equiv. KF 17 54 14
5 6 equiv. KF 45 0 28
6 5 equiv. of 1 44 3 30
7 Half concentration 36 24 20
8 Half concentration 33 0 24
9 Double concentration 35 0 30
10 100 °C instead of 50 °C 20 19 16
11 1 equiv. Cul 35 0 18

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). 2Yield determined by *H NMR analysis
using mesitylene as an internal standard. *Yields with respect to theoretical maximum formation of 7a.

From these screens it was shown that the photocatalyst loading could be lowered to 1 mol%
without any detriment to the reaction performance (entry 2).



Copper Catalyst Optimisation

p-Tolylboronic acid 1a (3 equiv.)
KF (3 equiv.)

[Cu] (30 mol%)
Br/\©\ Ru(bpy)s(PF) (2.5 mol%)
NO, Toluene, 50 °C, 16 h

4a Blue LEDs

Entry Catalyst

Cul

CuBr
PhenCu(PPh3)Br
Cu(OAc)2
Cu(OTf):

CuBr;

704 Cu20

D O B~ WO DN P

JORGN
baa

5aa (%) 4a (%)?

39
41
36
29
30
36
55

6
12
7
30
28
23
0

T
° C
7a
NO,

7a (%)*P
12
18
26
20
16
16
20

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). 2Yield determined by *H NMR analysis
using mesitylene as an internal standard. ®Yields with respect to theoretical maximum formation of 7a. °4 equiv-

alents of KF used. “Ru(bpy)s(PFe)2 (1 mol%)

Cu20 was identified as the best copper source.



Miscellaneous tests

p-Tolylboronic acid 1a (3 equiv.)

KF (4 equiv.)
Cu,0 (30 mol%) O2N
Br/\©\ Ru(bpy)s(PFe), (1 mol%) O
NO,  Toluene,50°C,16h NO,
4a Blue LEDs 5aa 7a
NO,

Entry Parameter 5aa(%)? 4a (%)® 7a (%)*°
1 Control 55 0 20
2 r.t. instead of 50 °C 16 64 8
3 CFL instead of LEDs 46 18 16
4 Schlenk Conditions 40 0 16
5 AgF instead of KF 31 0 0
6 Portion wise Cu 50 0 18
7* O2 Atmosphere 0 17 0
8 KF and AgF 0 0 0

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). 2Yield determined by *H NMR analysis
using mesitylene as an internal standard. Yields with respect to theoretical maximum formation of 7a. CFL=

co IIpaCt ||UOI escent |a|| p
O%\©\

Main product under
O, atm.

*Oxygen atmosphere reaction results in a large amount of aldehyde
product deriving from oxidation of benzylic radical:

Up until this point, all optimisation had been carried out on recrystalised p-tolyboronic acid 1
as a model substrate. To our surprise, when the optimised reaction conditions for 1 (Entry 1,
above) were applied to other arylboronic acids, either no coupling or low yields were ob-
tained. We hypothesized that this difference in reactivity may be due to the different position
of equilibrium between arylboronic acids and their corresponding arylboroxine for each aryl-
boronic acid. This potentially leads to different reactivity as the arylboroxine is thought to be
less efficient as a coupling partner. The reaction conditions would therefore need to be re-
optimised in order to find a set of general conditions which would work for all arylboronic
acids. We started by adding a known quantity of water to our reaction mixture in order to
perturb the equilibrium towards the desired arylboronic acid.

Ar<__O. 5 Ar

-3H,0 B
3 ArB(OH), =——= O._.0
+3H,0 B
arylboronic acid b Ar
arylboroxine



Water Content Optimisation?

p-NO,BNnBr 4a (1 equiv.)
KF (4 equiv.)
Cu,0 (15 mol%)

B(OH),  Ru(bpy)s(PFe), (1 mol%) O2N
©/ H,O (x equiv.) .
Toluene, 50 °C, 16 h NO, O
7a
NO,

3 equiv. Blue LEDs 5da
1d

Entry Equiv. 5da(%)®  4a (%)° 7a (%)°°
1 0 8 89 4
2 3 3 92 0
3 6 11 77 6
4 9 15 69 6
59 3 0 95 0
6¢ 6 3 68 1
7¢ 9 8 81 2
8 15 42 6 20
9 20 38 33 16
10 25 51 9 24
11 30 53 3 28
12 40 45 9 22
13 55 48 14 22
14 60 44 12 20
15 70 42 14 16

2Phenylboronic acid 1d was used straight from the bottle without prior recrystallization unless otherwise stated.
Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). *Yield determined by *H NMR analysis
using mesitylene as an internal standard. Yields with respect to theoretical maximum formation of 7a. “Arylbor-
oxine (dehydrated from phenylboronic acid) used instead of arylboronic acid from bottle.

The addition of 30 equiv. of water was deemed to be optimal in order to gain consistent yields
for a variety of arylboronic acids. The conditions in Entry 11 were therefore taken forward for
further screening.



Temperature Screen

p-NO,BNnBr 4a (1 equiv.)
KF (4 equiv.)
Cu,0 (15 mol%)

B(OH). Ru(bpy)s(PFg)2 (1 mol%) O2N
©/ H,O (30 equiv.) .
Toluene, temp., 16 h NO, O
7a
NO,

3 equiv. Blue LEDs 5da
1d
Entry Temp (°C) 5da (%)  4a (%)? 7a (%)*P
1 40 45 17 24
2 50 53 3 28
3 60 51 0 32

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). ?Yield determined by 'H NMR analysis
using mesitylene as an internal standard. ®Yields with respect to theoretical maximum formation of 7a.

Photocatalyst Screening

p-Tolylboronic acid 1a (3 equiv.)
KF (4 equiv.)
Cu,0 (15 mol%)

Photocatalyst (1 mol%) O2N
Br/\©\ H,O (30 equiv.) % O
NO Toluene, 50 °C, 16 h NO,
Saa 7a
NO,

2
4a Blue LEDs

Entry Photocatalyst 5aa 4a 7a
(%) (%) (%)*"

1 Ru(bpy)s(PFs)2 59 3 24
Ir(ppy)2(dtbbpy)(PFs) 51 0 16
Ir(ppy)s 14 8 22

4° EosinY 21 35 10

5¢ Fluorescein 20 62 10

6° Fukuzumi’s catalyst 3 78 4

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). ?Yield determined by *H NMR analysis
using mesitylene as an internal standard. PYields with respect to theoretical maximum formation of 7a. °Cu.0
(30 mol%) Fukuzumi’s Catalyst: 9-mesitylene-10-methylacridinium perchlorate.

Ru(bpy)s(PFe)2 is the best photocatalyst for the reaction of the examples screened. Organic
dyes such as Eosin Y and Fluorescein can also catalyse the reaction, but are far less efficient.



Testing more reducing catalyst for more electron-rich benzyl bromides:

The reaction using more electron-rich benzyl bromides (4k) was also attempted using the
more reducing fac-Ir(ppy)s photocatalyst. However this resulted in only trace amounts of the
desired product being detected by *H NMR with large amounts of homocoupled benzyl bro-
mide product 7k being detected (50%) and 11% of the benzyl bromide 4k starting material
being recovered. Therefore, this result indicates that although the benzyl radical is forming
from 4k with the more reducing photocatalyst, homocoupling predominates over the cross-
coupling reaction.

KF (4 equiv.)
OH H50 (30 equiv.) O
é Cu,0 (30 mol%)
©/\Br +/©/ "OH  fac-Ir(ppy)s (1 mol%)
Toluene, 72 h, 50 °C,
4k 1a Blue LEDs 5ak 7k O

Trace 50%
Reaction Using 4-Methoxypyridine as an Additive
4-Methoxypyridine (40 mol%) NC
KF (4 equiv.)
OH H>0O (30 equiv.) O
! Cu,0 (30 mol%)

B.
/@A Br/@/ OH  Ru(bpy)s(PFsg), (1 mol%)
NG * Toluene, 48 h, 50 °C, ¢

4d 1a Blue LEDs 5ak 7k O

14% 24%

In an attempt to improve the yields of product 5 and reduce reaction times, the reaction was carried
out in the presence of a substoichiometric amount of 4-methoxypyridine which has been previously
shown in the literature to activate benzyl bromides towards single electron reduction.!

However, under our reaction conditions, the addition of 4-methoxypyridine resulted in a re-
duction in the yield of 5ak (14% vs. 42%) but with comparable amounts of remaining starting
material 4d and homocoupling product 7k being observed when compared with the reaction
without additive. Therefore, we hypothesise that this is caused by the 4-methoxypyridine co-
ordinating to the copper catalyst and inhibiting the cross-coupling reaction.

Similarly, we also observe that no appreciable amount of cross-coupling product 5 is detected
when a pyridyl moiety is present in either substrate 1 or 4, indicating that this type of motif is
incompatible with our reaction conditions.

10
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KF (4 equiv.)

HBr H-,0 (30 equiv.)
Ru(bpy)3(PFg)2 (1 mol%)
@A Br | B(OH)2 Cu,0 (30 mol%) 7
N & Toluene, 48 h, 50 °C N &
1a Blue LEDs Trace

3 equiv.

KF (4 equiv.)
H,0 (30 equiv.)

Ru(bpy)s(PFs)2 (1 mol%)
gBr . mB(OH)Z Cu,0 (30 mol%) B
O,N N Toluene, 48h,50 °C ~ O,N N
4a

Blue LEDs Trace

\

3 equiv.

In both cases only traces of the desired products were observed and only traces of homocou-
pling product and left over starting material were detected.

Stoichiometry Optimisation

p-Tolylboronic acid 1a (y equiv.)
KF (4 equiv.)
Cu,0 (15 mol%)

Ru(bpy)s(PFg)2 (1 mol%) O5N
Br/\©\ H,O (30 equiv.) O
NO, Toluene, 50 °C, 16 h NO, O
5aa 7a
NO,

x equiv. Blue LEDs
4a

Entry X y Saa (%)*  4a (%)? 7a (%)*°
1 1 3 59 3 24

2 1 2 54 24 22

3 1 1 27 69 12

4 2 1 32 N/A° 8

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). ?Yield determined by *H NMR analysis
using mesitylene as an internal standard. "Yields with respect to theoretical maximum formation of 7a. “Not
applicable as 4a in excess.
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Control Reactions

p-Tolylboronic acid 1a (3 equiv.)
KF (4 equiv.)
Cu,0 (15 mol%)

Ru(bpy)s(PFg)2 (1 mol%) O2N
Br/\©\ H,0 (30 equiv.) - O
NO,  Toluene,50°C,16h NO, O
5aa 7a
NO,

4a Blue LEDs

Entry Change 5aa 4a 7a
(%)a,b (%)a,b (%)a,b
1 Normal Conditions 59 3 24
2 No Ru(bpy)s(PFs)2 0 100 0
3 No Cu20 21 56 14
4 No KF 0 100 0
5 In the dark 0 100 0
6*¢ Under Air 17 17 10

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). ®Yield determined by *H NMR analysis
using mesitylene as an internal standard. PYields with respect to theoretical maximum formation of 7a. °No
water, 20 mol% Cu;O.

*Carrying out the reaction under air results 15% aldehyde SI-1 formation.

These control reactions confirm that both the photoredox and copper catalysts are required
for the coupling reaction to proceed efficiently (Entries 2-3). Base (KF, Entry 3) and light (Entry
4) are also necessary.

12



Miscellaneous Optimisation

p-Tolylboronic acid 1a (3 equiv.)
KF (4 equiv.)
Cu,0 (x mol%)

Ru(bpy)3(PF6)2 (1 mol%) R
Br/\©\ H,0 (30 equiv.) _
R Toluene, 50 °C, th R
5a 7

4 Blue LEDs

R

Entry R X t 5a (%)? 4 (%)? 7 (%)*P
1 CN 15 16 42 41 28
2 CN 15 72 60 6 30
3 CN 15 120 60 5 34
4 CN 30 72 66(60)° trace 34
5 NO- 15 16 59 3 24
6 NO2 30 16 65(62)° 0 28

Reactions carried out on a 0.1 mmol scale (0.1 M unless stated otherwise). ®Yield determined by *H NMR analysis
using 1,3,5-trimethoxybenzene as an internal standard. "Yields with respect to theoretical maximum formation
of 7a. “Isolated yield.

It was found that when the relative strength of the electron withdrawing effect from the ben-
zyl bromide substituents was decreased, the reaction required extended reaction times to
reach completion. It was also observed that in addition to increasing the yields of the reaction,
increasing the copper loading from 15 to 30 mol% made the results of each reaction much
more reproducible.

13



Mechanistic Investigations
Radical Trap Experiment

TEMPO (2 equiv.)
KF (4 equiv.)
H,O (30 equiv.)

Ru(bpy)s(PFe)2 (1 mol%) _N
/©/\Br N B(OH)Z CUZO (30 m0|%) /O/\O
O,N Toluene, 160,50 °C ~ O,N

4a 1a Blue LEDs

3 equiv.

A oven-dried one dram vial was charged sequentially with 4-nitrobenzyl bromide (21.6 mg,
0.1 mmol), 4-tolylboronic acid (40.8 mg, 0.3 mmol), KF (23.2 mg, 0.4 mmol), TEMPO (31.3 mg,
0.2 mmol), Ru(bpy)s(PFe)2 (0.9 mg, 0.001 mmol) and Cu20 (4.3 mg, 0.03 mmol) under an argon
atmosphere. H,0 (54 mg, 54 uL, 3 mmol) was then added before all reagents were dissolved
in anhydrous toluene (1 mL). The resulting solution was then sparged with an argon balloon
for 5 minutes, before the vial was sealed and the resulting solution stirred at 50 °C under blue
LED irradiation for 16 h. The reaction was then diluted with EtOAc (10 mL) and H;0 (10 mL).
The organic and aqueous layers were then separated before the aqueous layer was extracted
with EtOAc (3x10 mL). The combined organic layers were washed with saturated Na;S,0s so-
lution (10 mL) followed by brine (10 mL). They were then dried over MgS0O4and concentrated
in vacuo to yield the crude product. Purification of the crude product by silica gel flash chro-
matography (49:1 to 19:1 petrol 40-60 °C: EtOAc, Rf = 0.30) followed by Kugelrohr distillation
provided TEMPO-trapped adduct 82 as a yellow solid (18.7 mg, 0.064 mmol, 64%).

Rt ; Vmax/cm™ 3006 (C-H Ar), 2975 (C-H), 2931 (C-H), 1605 (C-C Ar), 1521 (NO3), 1470 (C-C Ar),
1451 (C-C Ar), 1345 (NO2); *H NMR (300 MHz, CDCls) 81 8.20 (d, J = 8.9 Hz, 2H, Ar-H), 7.50 (d,
J =8.9 Hz, 2H, Ar-H), 4.93 (s, 2H, OCH;), 1.68 — 1.31 (m, 6H, 3xCH3), 1.21 (s, 6H, 2xCH3), 1.17
(s, 6H, 2xCHs); 3C NMR (CDCl3, 75 MHz) 8¢ 147.2 (C), 146.1 (C), 127.5 (CH), 123.7 (CH), 77.7
(CH2), 60.3 (C), 39.8 (CH>), 33.1 (CH3), 20.4 (CHs), 17.2 (CH3); m.p. = 61-62 °C (lit.? 60-62 °C).

No formation of coupling product 5aa was detected in the presence of TEMPO. Isolation of
the TEMPO trapped adduct of the benzylic radical originating from reduction of the benzyl
bromide would suggest that the mechanism of the reaction is radical based with benzylic rad-
icals serving as intermediates.

14



Quantum Yield Determination

The following model reaction was used in order to determine the quantum yield of the reac-
tion (following the method used by Nicewicz and co-workers.)?

p-Tolylboronic acid 1a (3 equiv.)
KF (4 equiv.)
Cu,0 (15 mol%)

Ru(bpy)3(PFe)2 (1 mol%)
Br/\©\ H,0 (30 equiv.) .
NO, Toluene (0.1 M), 50 °C NO,
5aa

4a Blue LEDs

In the dark, potasium ferrioxalate trihydrate (K2Fe(C,04)3) was prepared by adapting a previ-
ously reported literature procedure and was purified by recrystallization from water prior to
use.* A 0.15 M aqueous solution of K;Fe(C204)3 was made up before 1 mL of the solution was
irradiated under our standard reaction set up (Figure S1) for 30 seconds (a second measure-
ment was also carried out irradiating for 15 seconds). After irradiation, the samples were kept
in the dark as much as possible. After being irradiated for the appropriate amount of time,
0.5 mL of each sample was transferred to a 25 mL volumetric flask. To this 5 mL of a buffered
1,10-phenanthroline solution, previously prepared in accordance with the literature,® was
added and the flask made up to the mark with H,O. The resulting solution was then stirred at
room temperature for 30 minutes. 0.25 mL of the solution was then transferred to a cuvette
and diluted to 2.75 mL with H;0.

The moles of tris-phenanthroline-Fe?* complex (€510 nm= 11110 M1cm™)® was then deter-
mined using UV/vis spectroscopy. The photon flux on the system was determined using the
absolute quantum yield of 0.85 at 457.9 nm for the photodecomposition of KxFe(C;04)s3. The
photon flux averaged over the two experiments was determined to be 1.69x107 mol photons
51 (std. dev. 4.60x10® mol photons s1). The quantum yield of the reaction was then obtained
by stopping the reaction at varying degrees of conversion, using the following relationship,

moles of product

b, =
R ™ moles of incident photons

Three measurements were taken at 29%, 57% and 61% conversion. The average quantum
yield of the reaction was ¢ = 0.012 (std. dev. 0.0023).

(Sample calculation from 61% converted experiment, reaction time 8 h)
NMR yield = 47%

moles of product

b, =
R ™ moles of incident photons

moles of product

(OFSES - -
R ™ Photon flux X reaction time

B 4.7 x 107° mol
T 1.69x 1077 mols—! x 28800 s

Dr

15



d, = 0.0096

(Sample calculation from 57% converted experiment, reaction time 5 h)
NMR yield = 39%

moles of product

b, =
R ™ moles of incident photons
moles of product
CDR = " .
Photon flux X reaction time
o - 3.9 x 107> mol
R 1,69 x 1077 mols~t x 18000 s
®, =0.013

(Sample calculation from 29% converted experiment, reaction time 3 h)
NMR yield = 26%

moles of product

b, =
R ™ moles of incident photons
moles of product
q)R = 3 .
Photon flux X reaction time
© - 2.6 X 107> mol
R 7169 x 1077 mols~1 x 10800 s
d, =0.014

Taking the average of the three experiments gives the average quantum yield of the reaction
as @ =0.012 (std. dev. 0.0023).
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Procedure for the 1 mmol Scale Reaction

KF (4 equiv.)
H,0 (30 equiv.)

Ru(bpy)s(PFs)2 (1 mol%)
/©/\Br . B(OH)Z CUZO (30 molo/o)
O,N Toluene, 96 h, 50 °C ~ O,N 5aa

1 mmol 3 equiv.

An oven-dried pyrex test tube was charged sequentially with the 4-nitrobenzyl bromide 4a (1
mmol), the p-tolyllboronic acid 1a (3 mmol), KF (232 mg, 4 mmol), Ru(bpy)s(PFs)2 (8.6 mg,
0.01 mmol) and Cu20 (42.9 mg, 0.3 mmol) under an argon atmosphere. H,0 (540 mg, 540 uL,
30 mmol) was then added before all reagents were dissolved in anhydrous toluene which had
previously been rigorously degassed by 3 consecutive freeze-pump-thaw cycles (10 mL). The
resulting solution was then sparged vigorously with argon balloons for 45 minutes in the dark,
before the test tube was sealed using a fresh rubber seal and parafilm. The solution was then
stirred at 50 °C under blue LED irradiation for 96 h. The reaction was then diluted with EtOAc
(20 mL) and H20 (20 mL). The organic and aqueous layers were then separated, before the
aqueous layer was extracted with EtOAc (3x20 mL). The combined organic layers were
washed with brine (20 mL), dried over MgS04 and concentrated in vacuo to yield the crude
product. Purification of the crude product by silica gel flash chromatography (7:3 petrol 40-
60°C /toluene) yielded coupled product 5aa as a yellow crystalline solid (116.9 mg, 0.51 mmol,
51%).

Starting Material Synthesis

Ammonia-borane (HsN.BH3)’

(NHg)2(SO4)  + NaBH, »  H3N.BH;
THF, Ar, 40°C
Following a procedure by Zhang,” ammonium sulphate (3.30 g, 25 mmol) and sodium boro-
hydride (0.95 g, 25 mmol) were dissolved in anhydrous THF (150 mL) under an argon atmos-
phere. The resulting solution was then vigorously stirred for 3 h at 40 °C. Upon completion of
the reaction, the mixture was allowed to cool to room temperature before being filtered.
Concentration of the solution under reduced pressure yielded the title compound (0.59 g, 19
mmol, 76%) as a white solid, with spectral data in accordance with the literature.

Rf ; Vmax/cmt; 3306 (N-H), 3248 (N-H), 2322, 2279, 1368, 1312 *H NMR (300 MHz, DMSO) &x
4.40 (br s, 3H, NH3), 2.08 — 0.40 (m, 3H, BH3).; 1'B NMR (96 MHz, DMSO) 6g -22.96; m.p. =
110-112 °C (lit.” 108.9-110 °C).
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(2,4-Dinitrophenyl)methanol’ (SI-3)

NO, O NO,
HaN.BH5 (1 equiv.)
H > OH
H,O, r.t., 4h
O,N O,N
SI-2 sI-3

Following a procedure by Zhang,” 2,4-dinitrobenzaldehyde SI-2 (1.00 g, 5.1 mmol) and ammo-
nia-borane (0.16 g, 5.1 mmol) were dissolved in H20 (20 mL), the resulting solution was then
stirred at room temperature for 4 h. Upon completion, the reaction mixture was extracted
with EtOAc (3 x 40 mL). The combined organic layers were then washed with brine, dried over
MgSO0, filtered and concentrated at reduced pressure to give the crude product. Purification
by silica gel column chromatography (7:3 petrol 40-60 °C: EtOAc, Rs: 0.29) yielded SI-3 (0.88
g, 4.4 mmol, 87%) as an orange solid with spectral data in accordance with the literature.’
Some impurities remained in the product but it was deemed pure enough to be taken to the
next step.

1-(Bromomethyl)-2,4-dinitrobenzene? (4l)

NO, P05 (2 equiv.) NO,
KBr (1.5 equiv.)
OH > Br
MeCN, 50 °C, 24h
O,N O,N
SI-3 4|

N.B.: Reaction carried out under an argon atmosphere.

Adapting a procedure by Gheisari® (2,4-dinitrophenyl)methanol SI-3 (500 mg, 2.52 mmol), po-
tassium bromide (451 mg, 3.78 mmol) and phosphorus pentoxide (715 mg, 5.04 mmol) were
dissolved in anhydrous acetonitrile (12.5 mL). The resulting solution was then stirred at 50 °C
for 24 h. Upon completion of the reaction, the mixture was allowed to cool to room temper-
ature before being extracted with EtOAc (3 x 20 mL). The combined organic layers were then
washed with brine, dried over MgSQ04 and filtered. Concentration of the solution under re-
duced pressure gave the crude product. Purification of the crude product by silica gel column
chromatography (9:1 to 85:15 to 4:1 petrol 40-60 °C/EtOAc) yielded the title compound 4l
(470 mg, 1.81 mmol, 72%) as a yellow solid.

Rf 0.21 (9:1 petrol 40-60 °C/EtOAC); Vmax/cm™ 3022 (C-H Ar), 2877 (C-H), 1606 (C-C Ar), 1537
(NO2), 1440 (C-C Ar), 1346 (NO2); *H NMR (CDCls, 400 MHz) 64 8.89 (d, J = 2.4 Hz, 1H, Ar-H),
8.46 (d, J = 8.5, 2.4 Hz, 1H, Ar-H), 7.84 (d, J = 8.5 Hz, 1H, Ar-H), 4.88 (s, 2H, CH-); 13C NMR
(CDCl3, 101 MHz) 8¢ 148.2 (C), 147.9 (C), 139.3 (C), 134.1 (CH), 127.8 (CH), 121.1 (CH), 27.0
(CH2); m.p. = 43-46 °C (lit.2 42-43 °C).
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1-(1-Bromoethyl)-4-nitrobenzene® (4m)

NaBrO5 (3 equiv.) Br

NaH2803 (3 equiv.)
/©/\ H,O/EtOAc (2.3:1), r.t.,, 8 h
O,N O,N

Sl-4 4m

Following a procedure by Ishii,*° to a solution of sodium bromate (600 mg, 3.96 mmol) in H,0
(2 mL) a solution of 4-ethylnitrobenzene (202 mg, 1.32 mmol) was added. A solution of so-
dium hydrogen sulphite (414 mg, 3.96 mmol) in H,0 (4 mL) was added dropwise over a period
of 15 minutes. Once addition was complete, the resulting solution was then stirred at r.t. for
8 h. The crude mixture was then diluted with Et,0 (20 mL) before the organic and aqueous
layers were separated. The aqueous layer was then washed with Et,0 (2x20 mL), the com-
bined organic layers were then washed with saturated Na,SOs solution (20 mL) dried over
MgSOQ; filtered and concentrated at reduced pressure. Purification of the crude residue by
silica gel flash column chromatography (19:1 petrol 40-60 °C/ EtOAc) afforded the product
4m (246.9 mg, 1.07 mmol) as yellow oil which crystallised on standing.

Rr 0.36 (19:1 petrol 40-60 °C/EtOAC; Vmax/cmt 3076 (C-H Ar), 2920 (C-H), 1596 (C-C Ar), 1513
(NO2) 1492 (C-C Ar), 1452 (C-C Ar), 1339 (NO,); *H NMR (CDCls, 400 MHz) &4 8.20 (d, J = 8.6
Hz, 2H, Ar-H), 7.60 (d, J = 8.6 Hz, 2H, Ar-H), 5.20 (g, J = 6.9 Hz, 1H, ArCH), 2.05 (d, J = 6.9 Hz,
3H, CHs); 3C NMR (CDCls, 101 MHz) 8¢ 150.2 (C), 147.7 (C), 128.0 (CH), 124.1 (CH), 46.5 (CH),
26.6 (CHs); m.p. = 36-38 °C.
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General Procedure for the Dual Copper- and Photoredox-Catalysed C(sp?)-
C(sp?) Cross-Coupling

KF (4 equiv.)
H,O (30 equiv.)

Ru(bpy)3(PFg)2 (1 mol%)
B(OH
Rt@ABF . R2( )2 Cuz0 (30 mol%) R1R2
Toluene, 16 h, 50 °C 5
4 1 Blue LEDs
3 equiv.

An oven-dried one dram vial was charged sequentially with the benzyl bromide 4 (0.1 mmol),
the arylboronic acid 1 (0.3 mmol), KF (23.2 mg, 0.4 mmol), Ru(bpy)s(PFs)2 (0.9 mg, 0.001
mmol) and Cu;0 (4.3 mg, 0.03 mmol) under an argon atmosphere. H,0 (54 mg, 54 uL, 3 mmol)
was then added before all reagents were dissolved in anhydrous toluene (1 mL). The resulting
solution was then sparged with an argon balloon for 5 minutes, before the vial was sealed.
The solution was then stirred at 50 °C under blue LED irradiation for 16-96 h. The reaction was
then diluted with EtOAc (10 mL) and H,0 (10 mL). The organic and aqueous layers were then
separated, before the aqueous layer was extracted with EtOAc (3x10 mL). The combined or-
ganic layers were washed with brine (10 mL), dried over MgS0O4and concentrated in vacuo to
yield the crude product. Purification of the crude product by silica gel flash chromatography
then yielded coupled products 5.

Figure S1
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Product Characterisation

1-Methyl-4-(4-nitrobenzyl)benzene (5aa)!!

OzN

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with 4-tolylboronic acid (40.8 mg, 0.3 mmol) for 16 h. The crude was purified by silica gel flash
column chromatography (7:3 petrol 40-60 °C/toluene) to yield product 5aa (14.1 mg, 0.062
mmol, 62%) as a yellow solid.

Rf 0.26 (7:3 petrol 40-60 °C/toluene) ; vmax/cm™ 3048 (C-H Ar), 2929 (C-H), 2860 (C-H), 1601
(C-C Ar), 1592 (C-C Ar), 1511 (NO3), 1339 (NO,); *H NMR (CDCls, 400 MHz) 6 8.14 (d, J = 8.9
Hz, 2H, Ar-H), 7.33 (d, J = 8.9 Hz, 2H, Ar-H), 7.13 (d, / = 7.9 Hz, 2H, Ar-H), 7.06 (d, J = 7.9 Hz,
2H, Ar-H), 4.04 (s, 2H, CH3), 2.33 (s, 3H, CH3); 3C NMR (CDCls, 100 MHz) 149.3 (C), 146.7 (C),
136.5 (C), 136.3 (C), 129.7 (CH), 129.6 (CH), 129.0 (CH), 123.9 (CH), 41.5 (CH), 21.1 (CHs); m.p.
=74-75 °C.

1-Methyl-4-(2-nitrobenzyl)benzene (5ab)

NO,

Following the general procedure, 2-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with 4-tolylboronic acid (40.8 mg, 0.3 mmol) for 16 h. The crude was purified by silica gel flash
column chromatography (17:3->4:1->1:1 petrol 40-60 °C/toluene) to yield product 5ab (14.8
mg, 0.065 mmol, 65%) as a yellow oil.

R¢0.37 (9:1 petrol 40-60 °C/toluene); vmax/cm 23010 (C-H Ar), 2923 (C-H), 1578 (C-C Ar), 1525
(NO3), 1514 (C-C Ar), 1445 (C-C Ar), 1349 (NO3); *H NMR (CDCls, 400 MHz) 84 7.91 (dd, J = 8.3,
1.3 Hz, 1H, Ar-H), 7.50 (ddd, J = 7.5, 7.5, 1.3 Hz, 1H, Ar-H), 7.39 — 7.34 (m, 1H, Ar-H), 7.29 —
7.27 (m, 1H, Ar-H), 7.10 (d, J = 8.0 Hz, 2H, Ar-H), 7.04 (d, J = 8.0 Hz, 2H, Ar-H), 4.27 (s, 2H, CH2),
2.32 (s, 3H, CHs); 3C NMR (CDCls, 101 MHz) ¢ 149.6 (C), 136.3 (C), 136.2 (C), 135.8 (C), 133.0
(CH), 132.5 (CH), 129.5 (CH), 129.1 (CH), 127.4 (CH), 124.8 (CH), 38.0 (CH3), 21.2 (CHs); HRMS
Found (TOF MS ASAP+) [M-H]* 226.0870, C14H12NO; requires 226.0868.
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1-(4-Methylbenzyl)-3-nitrobenzene (5ac)'?

OzN

Following the general procedure, 3-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with 4-tolyboronic acid (40.8 mg, 0.3 mmol) for 96 h. giving an NMR vyield of 44%. Analysis of
the crude 'H NMR spectra using 1,3,5 trimethoxybenzene as an internal standard gave an
NMR vyield of 44% with spectral data matching literature data.'? Due to co-ellution with the
benzyl bromide starting material, an accurate isolated yield for the reaction could not be de-
termined. The co-elluted mixture was dissolved in acetonitrile (5 mL) before potassium ace-
tate (49 mg, 0.5 mmol) was added and the mixture stirred overnight. Any remaining potas-
sium acetate was removed by vacuum filtration before the solvent was removed in vacuo.
The resulting residue was then subjected to silica gel flash column chromatography (7:3 petrol
40-60 °C/toluene) which yielded a pure sample of 5ac as a white solid which was then used
for characterisation.

Rf0.33 (7:3 petrol 40-60 °C/toluene); Vmax/cm™ 3010 (C-H Ar), 2922 (C-H), 1527 (NO,), 1514
(C-C Ar), 1479 (C-C Ar), 1442 (C-C Ar), 1350 (NO3); *H NMR (CDCls, 400 MHz) & 8.08 — 8.03
(m, 2H, Ar-H), 7.53 = 7.49 (m, 1H, Ar-H), 7.47 — 7.41 (m, 1H, Ar-H), 7.13 (d, J = 7.9 Hz, 2H, Ar-
H), 7.08 (d, J = 7.9 Hz, 2H, Ar-H), 4.04 (s, 2H, CH3), 2.33 (s, 3H, CHs); 3C NMR (CDCls, 101 MHz)
8¢ 148.7 (C), 143.7 (C), 136.5 (C), 136.5 (C), 135.1 (CH), 129.7 (CH), 129.4 (CH), 128.9 (CH),
123.8 (CH), 121.4 (CH), 41.3 (CH,), 21.2 (CHs); m.p. = 61-63 °C.

4-(4-Methylbenzyl)benzonitrile (5ad)*3

BORSN

Following the general procedure, 4-(bromomethyl)benzonitrile (19.6 mg, 0.1 mmol) was re-
acted with 4-tolylboronic acid (40.8 mg, 0.3 mmol) for 72 h. The crude was purified by silica
gel flash column chromatography (1:1 petrol 40-60 °C/toluene) to yield product 5ad (12.4 mg,
0.060 mmol, 60%) as a white solid.

R = 0.19 (1:1 petrol 40-60 °C/toluene); Vmax/cm™ 3020 (C-H Ar), 2924 (C-H), 2229 (C=N), 1607
(C-C Ar), 1515 (C-C Ar), 1505 (C-C Ar); 'H NMR (CDCls, 400 MHz) 64 7.56 (d, J = 8.3 Hz, 2H, Ar-
H), 7.28 (d, J = 8.3 Hz, 2H, Ar-H), 7.12 (d, J = 7.9 Hz, 2H, Ar-H), 7.05 (d, J = 7.9 Hz, 2H, Ar-H),
3.99 (s, 2H, CH3), 2.33 (s, 3H, CH3); 13C NMR (CDCl3, 101 MHz) 147.2 (C), 136.4 (C), 132.4 (CH),
129.7 (CH), 129.6 (CH), 129.0 (CH), 119.1 (C), 110.2 (C), 41.7 (CH3), 21.1 (CH3) + 1 overlapping
C; m.p. = 63-66 °C (lit.23 65 °C).
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Ethyl 4-(4-methylbenzyl)benzoate (5ae)'*

EtO,C” ‘ ‘ ~

Following the general procedure, ethyl 4-(bromomethyl)benzoate (24.3 mg, 0.1 mmol) was
reacted with 4-tolyboronic acid (40.8 mg, 0.3 mmol) for 96 h. Analysis of the crude 'H NMR
spectra using 1,3,5 trimethoxybenzene as an internal standard gave an NMR yield of 44% with
spectral data matching literature data.'* Column chromatography was attempted but product
5ae co-eluted with unreacted benzyl bromide starting material under a number of solvent
systems and could not be separated.

3-Bromo-4-(4-methylbenzyl)benzonitrile (5af)

Br
NC

Following the general procedure, 3-bromo-4-(bromomethyl)benzonitrile (27.5 mg, 0.1 mmol)
was reacted with 4-tolylboronic acid (40.8 mg, 0.3 mmol) for 72 h. The crude was purified by
silica gel flash column chromatography (1:1 petrol 40-60 °C/toluene) to yield product 5af (15.8
mg, 0.055 mmol, 55%) as a colourless oil.

Rf 0.40 (1:1 petrol 40-60 °C/toluene); vmax/cm* 3023 (C-H Ar), 2922 (C-H), 2231 (C=N), 1597
(C-CAr), 1514 (C-C Ar), 1479 (C-C Ar) ; *H NMR (CDCls, 400 MHz) 61 7.86 (d, J = 1.7 Hz, 1H, Ar-
H), 7.50 (dd, J = 8.0, 1.7 Hz, 1H, Ar-H), 7.19 (d, J = 8.0 Hz, 1H, Ar-H), 7.14 (d, J = 7.9 Hz, 2H, Ar-
H), 7.06 (d, J = 7.9 Hz, 2H, Ar-H), 4.11 (s, 2H, CH>), 2.34 (s, 3H, CH3); *3C NMR (CDCls, 101 MHz)
6c 146.8 (C), 136.7 (C), 136.1 (CH), 134.9 (C), 131.5 (CH), 131.1 (CH), 129.6 (CH), 129.1 (CH),
125.3 (C), 117.5 (C), 111.9 (C), 41.7 (CHy), 21.2 (CH3); HRMS Found (FTMS + p APCI) [M+H]*
286.0225, C15H13NBr requires 286.0226.
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3-Fluoro-4-(4-methylbenzyl)benzonitrile (5ag)

F
NC

Following the general procedure, 4-(bromomethyl)-3-fluorobenzonitrile (21.4 mg, 0.1 mmol)
was reacted with 4-tolylboronic acid (40.8 mg, 0.3 mmol) for 96 h. The crude was purified by
silica gel flash column chromatography (9:11 petrol 40-60 °C/toluene) to yield product 5ag
(13.4 mg, 0.060 mmol, 60%) as a colourless oil.

Rf 0.43 (2:3 petrol 40-60 °C/toluene); vmax/cm™ 3023 (C-H Ar), 2922 (C-H), 2233 (C=N), 1607
(C-C Ar), 1571 (C-C Ar), 1498 (C-C Ar); *H NMR (CDCls, 400 MHz) 84 7.39 — 7.31 (m, 2H, Ar-H),
7.26 —7.21 (m, 1H, Ar-H), 7.21 — 7.18 (m, 1H, (p-tolyl)), 7.09 — 7.03 (m, 1H, (p-tolyl)), 7.01 —
6.97 (m, 2H, Ar-H (p-tolyl)), 4.00 (s, 2H, CH,), 2.33 (s, 3H, CHs).; 13C NMR (CDCls, 101 MHz) &¢
160.5 (d, J = 249.3 Hz, C), 138.7 (C), 138.1 (C) , 134.7 (d, J = 16.0 Hz, C), 132.1 (d, J = 5.1 Hz,
CH), 129.8 (CH), 128.9 (CH), 128.3 (d, J = 3.8 Hz, CH), 127.7 (CH), 126.0 (CH), 119.2 (d, J = 25.9
Hz, CH), 117.8 (d, J=2.7 Hz, C), 111.7 (d, J = 9.4 Hz, C), 34.9 (d, J = 2.8 Hz, CH,), 21.5 (CH3); °F
NMR (CDCls, 376 MHz) 6¢-114.37 (dd, J=7.9 Hz, 7.9 Hz); HRMS Found (TOF MS ASAP+) [M+H]*
226.1035 C15H13NF requires 226.1032.

Note: The seemingly “extra” CH signals in the 3C NMR spectra are due to the 4 CHs on the p-
tolyl ring being inequivalent. This is supported by HSQC NMR experiments. Spectra provided
in Section 8.

1,2,3,4,5-Pentafluoro-6-(4-methoxybenzyl)benzene (5bh)*>
F

BOAS

F F OMe
F

Following the general procedure, 1-(bromomethyl)-2,3,4,5,6-pentafluorobenzene (26.1 mg,
0.1 mmol) was reacted with (4-methoxyphenyl)boronic acid (45.6 mg, 0.3 mmol) for 48 h. The
crude was purified by silica gel flash column chromatography (1:0->99:1->19:1 petrol 40-60
°C/toluene) to yield product 5bh (14.8 mg, 0.051 mmol, 51%) as a colourless oil.

Rf 0.24 (99:1 petrol 40-60 °C/toluene); vmax/cm™ 3006 (C-H Ar), 2931 (C-H), 1504 (C-C Ar),
1465 (C-C Ar), 1422 (C-C Ar), 1247 (C-O-C); *H NMR (CDCls, 400 MHz) &4 7.16 (d, J = 8.8 Hz,
2H, Ar-H), 6.83 (d, J = 8.8 Hz, 2H, Ar-H), 3.96 (t, J = 1.9 Hz, 2H, CH.), 3.78 (s, 3H, CH3); 13C NMR
(CDCl3, 101 MHz) 8¢ 158.8 (C), 129.7 (C), 129.5 (CH), 114.4 (CH), 55.4 (CH3), 27.5 (CH.), 6 qua-
ternary Cs (4 signals expected) on the pentafluorophenyl moiety are missing due to low in-
tensity resulting from extensive coupling to fluorine but all other spectral and characterisation
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data are consistent with literature data;'> *°®F NMR (CDCls, 376 MHz) 6¢-143.55 —-143.68 (m),
-157.39 (t, J = 21.3 Hz), -162.32 —-162.51 (m).

Methyl 2-(4-methoxybenzyl)-3-nitrobenzoate (5bi)

CO,Me

‘ :NOZ ‘ “OMe

Following the general procedure, methyl 2-(bromomethyl)-3-nitrobenzoate (27.4 mg, 0.1
mmol) was reacted with (4-methoxyphenyl)boronic acid (45.6 mg, 0.3 mmol) for 16 h. The
crude was purified by silica gel flash column chromatography (1:3-—>1:5->1:7-1:10 petrol 40-
60 °C/toluene) to yield product 5bi (16.2 mg, 0.054 mmol, 54%) as a yellow oil.

Rf 0.22 (1:7 petrol 40-60 °C/toluene); max/cm™ 3026 (C-H Ar), 2925 (C-H), 2852 (C-H), 1727
(C=0), 1606 (C-C Ar), 1532 (NO.), 1480 (C-C Ar), 1435 (C-C Ar), 1347 (NO2), 1249 (C-O-C); H
NMR (CDCls, 300 MHz) 64 7.94 (dd, J = 7.9, 1.4 Hz, 1H, Ar-H), 7.82 (dd, J = 7.9, 1.4 Hz, 1H, Ar-
H), 7.44 (dd, J = 7.9, 7.9 Hz, 1H, Ar-H), 7.00 — 6.91 (m, 2H, Ar-H), 6.81 — 6.72 (m, 2H, Ar-H),
4.45 (s, 2H, CH,), 3.81 (s, 3H, CHs), 3.75 (s, 3H, CHs); 13C NMR (CDCls, 75 MHz) 6¢ 167.2 (C),
158.2 (C), 152.1 (C), 135.1 (C), 134.2 (C), 133.6 (CH), 130.9 (C), 129.7 (CH), 127.4 (CH), 126.9
(CH), 113.9 (CH), 55.3 (CHs), 52.8 (CHs), 32.8 (CH2); HRMS Found (TOF MS ASAP+) [M-CHs]*
286.0714 C15H12NOs requires 286.0715.

Methyl 3-chloro-4-(4-methylbenzyl)benzoate (5aj)

Cl
MeOZC

Following the general procedure, methyl 2-(bromomethyl)-5-chlorobenzoate (26.4 mg, 0.1
mmol) was reacted with 4-tolyboronic acid (40.8 mg, 0.3 mmol) for 96 h. Analysis of the crude
'H NMR spectra using 1,3,5 trimethoxybenzene as an internal standard gave an NMR yield of
47%. Due to co-ellution with the benzyl bromide starting material an accurate isolated yield
for the reaction could not be determined. 5aj was previously unknown in the literature there-
fore, the co-elluted mixture was dissolved in acetonitrile (5 mL) before potassium acetate (49
mg, 0.5 mmol) was added and the mixture stirred overnight. Any remaining potassium acetate
was removed by vacuum filtration before the solvent was removed in vacuo. The resulting
residue was then subjected to silica gel flash column chromatography (7:3 petrol 40-60 °C/tol-
uene) which yielded a pure sample of 5aj as a colourless oil which was then used for charac-
terisation.

Rf 0.28 (7:3 petrol 40-60 °C/toluene); Vmax/cm-t 3023 (C-H Ar), 2952 (C-H), 2924 (C-H), 1721
(C=0), 1604 (C-C Ar), 1562 (C-C Ar), 1514 (C-C Ar), 1436 (C-C Ar); *H NMR (CDCls, 400 MHz) &4
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8.04 (d, J=1.7 Hz, 1H, Ar-H), 7.83 (dd, J = 8.0, 1.7 Hz, 1H, Ar-H), 7.20 (d, J = 8.0 Hz, 1H, Ar-H),
7.12 (d, J = 8.0 Hz, 2H, Ar-H), 7.07 (d, J = 8.0 Hz, 2H, Ar-H), 4.10 (s, 2H, CHa), 3.91 (s, 3H, CH3),
2.33 (s, 3H, CH3); 3C NMR (CDCls, 101 MHz) &¢ 166.1 (C), 144.3 (C), 136.3 (C), 135.7 (C), 134.6
(C), 131.0 (CH), 130.8 (CH), 129.9 (C), 129.5 (CH), 129.0 (CH), 128.0 (CH), 52.4 (CHs), 39.1 (CH,),
21.2 (CHs); HRMS Found (TOF MS ASAP+) [M+H]* 275.0840 C16H1602Cl requires 275.0839.

1-Methyl-4-(1-(4-nitrophenyl)ethyl)benzene (5am)®

O,N ‘ ‘

Following the general procedure, 1-(1-bromoethyl)-4-nitrobenzene (23.0 mg, 0.1 mmol) was
reacted with 4-tolylboronic acid (40.8 mg, 0.3 mmol) for 40 h. Analysis of the crude *H NMR
spectra using 1,3,5 trimethoxybenzene as an internal standard gave an NMR yield of 45%. The
crude was purified by silica gel flash column chromatography (4:1 petrol 40-60 °C/toluene) to
yield product 5am (6.4 mg, 0.027 mmol, 27%) as a yellow solid.

Rf 0.33 (4:1 petrol 40-60 °C/toluene); Vmax/cm™ 2970 (C-H Ar), 2925 (C-H), 1597 (C-C Ar), 1514
(NO,), 1492 (C-C Ar), 1453 (C-C Ar), 1345 (NO,); *H NMR (CDCls, 400 MHz) 64 8.13 (d, J = 8.9
Hz, 2H, Ar-H), 7.36 (d, J = 8.9 Hz, 2H, Ar-H), 7.13 (d, J = 8.2 Hz, 2H, Ar-H), 7.08 (d, J = 8.2 Hz,
2H, Ar-H), 4.22 (q, J = 7.2 Hz, 1H, CH), 2.32 (s, 3H, Ar-CHs), 1.66 (d, J = 7.2 Hz, 3H, CHs); 3C
(CDCls, 101 MHz) 8¢ 154.5 (C), 146.6 (C), 141.7 (C), 136.5 (C), 129.6 (CH), 128.5 (CH), 127.6
(CH), 123.8 (CH), 44.6 (CH), 21.7 (CHs), 21.1 (CHs); m.p. = 69-71 °C.

1-Methyl-3-(4-nitrobenzyl)benzene (5ba)’

02N

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with 3-tolylboronic acid (40.8 mg, 0.3 mmol) for 16 h. The crude was purified by silica gel flash
column chromatography (4:1 petrol 40-60 °C/toluene) to yield product 5ba (13.0 mg, 0.057
mmol, 57%) as a yellow oil.

Rt 0.34 (4:1 petrol 40-60 °C/toluene); Vmax/cm™ 3010 (C-H Ar), 2922 (C-H), 1605 (C-C Ar), 1515
(NO3) 1492 (C-H Ar), 1345 (NO,); *H NMR (CDCls, 400 MHz) &4 8.14 (d, J = 8.8 Hz, 2H, Ar-H),
7.34 (d, J = 8.8 Hz, 2H, Ar-H), 7.25 — 7.18 (m, 1H, Ar-H), 7.09 — 7.03 (m, 1H, Ar-H), 7.00 — 6.95
(m, 2H, Ar-H), 4.04 (s, 2H, CH,), 2.33 (s, 3H, CHz); 23C NMR (CDCl3, 101 MHz) 6¢ 149.1 (C), 146.7
(C), 139.3 (C), 138.7 (C), 129.9 (CH), 129.8 (CH), 128.9 (CH), 127.7 (CH), 126.1(CH), 123.9 (CH),
41.9 (CHa), 21.5 (CH3).
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1-Methyl-2-(4-nitrobenzyl)benzene (5ca)'®

O,N : E

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with 2-tolyboronic acid (40.8 mg, 0.3 mmol) for 96 h. Analysis of the crude *H NMR spectra
using 1,3,5 trimethoxybenzene as an internal standard gave an NMR yield of 51%. Due to co-
ellution with the benzyl bromide starting material an accurate isolated yield for the reaction
could not be determined. 5ca was previously known in the literature but as part of a mixture
of isomers, therefore, the co-elluted mixture was dissolved in acetonitrile (5 mL) before
potassium acetate (49 mg, 0.5 mmol) was added and the mixture stirred overnight. Any
remaining potassium acetate was removed by vacuum filtration before the solvent was
removed in vacuo. The resulting residue was then subjected to silica gel flash column
chromatography (7:3 petrol 40-60 °C/toluene) which yielded a pure sample of 5ca as a
colourless oil which was then used for characterisation.

R¢0.30 (7:3 petrol 40-60 °C/toluene); Vmax/cm™* 3013 (C-H Ar), 2925 (C-H), 1597 (C-C Ar), 1516
(NO,), 1492 (C-C Ar), 1462 (C-C Ar), 1345 (NO,); *H NMR (CDCls, 400 MHz) 64 8.13 (d, J = 8.8
Hz, 2H, Ar-H), 7.26 (d, J = 8.8 Hz, 2H, Ar-H), 7.22 — 7.17 (m, 3H, Ar-H), 7.12 — 7.08 (m, 1H, Ar-
H), 4.09 (s, 2H, CH,), 2.21 (s, 3H, CH3); 13C NMR (CDCls, 101 MHz) 8¢ 148.5 (C), 146.7 (C), 137.3
(C), 136.7 (C), 130.8 (CH), 130.2 (CH), 129.5 (CH), 127.3 (CH), 126.5 (CH), 123.8 (CH), 39.6
(CH2), 19.8 (CH3).

1-Benzyl-4-nitrobenzene (5da)!

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with 2-tolyboronic acid (36.6 mg, 0.3 mmol) for 16 h. The crude was purified by silica gel flash
column chromatography (4:1 petrol 40-60 °C/toluene) to yield product 5da (12.3 mg, 0.058
mmol, 58%) as a yellow oil

R¢0.30 (4:1 petrol 40-60 °C/toluene); Vmax/cm™ 3028 (C-H Ar), 2922 (C-H), 1605 (C-C Ar), 1595
(C-C Ar), 1516 (NO3), 1495 (C-C Ar), 1453 (C-H), 1347 (NO>); 'H NMR (CDCls, 400 MHz) &y 8.15
(d, J = 8.7 Hz, 2H, Ar-H), 7.37 = 7.30 (m, 4H, Ar-H), 7.28 — 7.22 (m, 1H, Ar-H), 7.17 (d, J = 8.7
Hz, 2H,Ar-H), 4.08 (s, 2H, CH-); 3C NMR (CDCls, 101 MHz) 8¢ 149.0 (C), 146.8 (C), 139.3 (C),
129.8 (CH), 129.1 (CH), 129.0 (CH), 126.9 (CH), 123.9 (CH), 41.9 (CH,).
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1-Methoxy-4-(4-nitrobenzyl)benzene (5ea)*®

O,N” ‘ ‘ “OMe

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with (4-methoxyphenyl)boronic acid (45.6 mg, 0.3 mmol) for 16 h. Analysis of the crude *H
NMR spectra using 1,3,5 trimethoxybenzene as an internal standard gave an NMR vyield of
57%, with spectral data matching literature data.’® Column chromatography was attempted
but product 5ea co-elluted with homocoupling product under a number of solvent systems
and could not be separated.

1-Chloro-4-(4-nitrobenzyl)benzene (5fa)!

O,N’ ‘ ‘ “Cl

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with (4-chlorophenyl)boronic acid (46.9mg, 0.3 mmol) for 72 h. The crude was purified by
silica gel flash column chromatography (8:1:1 petrol 40-60 °C/toluene/ethyl acetate) to yield
product 5fa (10.8 mg, 0.044 mmol, 44%) as an orange solid.

Rf 0.51 (8:1:1 petrol 40-60 °C/toluene/ethyl acetate); vmax/cm™ 3028 (C-H Ar), 2926 (C-H),
1606 (C-C Ar), 1519 (NO2), 1492 (C-C Ar), 1347 (NO>); *H NMR (CDCls, 400 MHz) &y 8.15 (d, J
=8.9 Hz, 2H, Ar-H), 7.32 (d, J = 8.9 Hz, 2H, Ar-H), 7.29 (d, J = 8.6 Hz, 2H, Ar-H), 7.10 (d, /= 8.6
Hz, 2H, Ar-H), 4.05 (s, 2H, CH>).; 3C NMR (CDCls, 101 MHz) ¢ 148.3 (C), 146.9 (C), 137.8 (C),
132.9 (C), 130.4 (CH), 129.8 (CH), 129.1 (CH), 124.0 (CH), 41.2 (CH.); m.p. = 63-66 °C.

1-Fluoro-4-(4-nitrobenzyl)benzene (5ga)?°

OzNF

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with (4-fluorophenyl)boronic acid (42.0 mg, 0.3 mmol) for 72 h. The crude was purified by
silica gel flash column chromatography (4:1 petrol 40-60 °C/toluene) to yield product 5ga
(12.1 mg, 0.052 mmol, 52%) as an off-white solid.

Rf 0.25 (4:1 petrol 40-60 °C/toluene); Vmax/cm-t 3029 (C-H Ar), 2925 (C-H), 2853 (C-H), 1606
(C-C Ar), 1520 (NO3), 1510 (C-C Ar), 1492 (C-C Ar) 1347 (NO); *H NMR (CDCls, 300 MHz) &4
8.15 (d, J = 8.8 Hz, 2H, Ar-H), 7.31 (d, J = 8.8 Hz, 2H, Ar-H), 7.19 — 7.07 (m, 2H, Ar-H), 7.07 -
6.94 (m, 2H, Ar-H), 4.05 (s, 2H, CH.); 3C NMR (CDCls, 75 MHz) &¢ 161.9 (d, J = 245.3 Hz, C),
148.7 (C), 146.8 (C), 135.0 (d, J = 3.2 Hz, C), 130.6 (d, J = 8.2 Hz, CH), 129.7 (CH), 124.0 (CH),
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115.8 (d, J = 21.5 Hz, CH), 41.0 (CH.); '°F NMR (CDCls, 282 MHz) 8¢-116.05 (tt, J = 9.3, 5.3 Hz);
m.p. = 55-56 °C (lit.2° 58-60 °C).

1-Chloro-2-methyl-4-(4-nitrobenzyl)benzene (5ha)

O,N” ‘ ‘ :CI

Following the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted
with (4-chloro-3-methylphenyl)boronic acid (51.1 mg, 0.3 mmol) for 96 h. The crude was
purified by silica gel flash column chromatography (4:1 petrol 40-60 °C/toluene) to yield
product 5ha (13.0 mg, 0.050 mmol, 50%) as a colorless solid.

R 0.30 (4:1 petrol 40-60 °C/toluene); vmax/cm™ 3027 (C-H Ar), 2925 (C-H), 2852 (C-H), 1606
(C-C Ar), 1597 (C-C Ar), 1517 (NO2), 1480 (C-C Ar), 1346 (NO2); *H NMR (CDCls, 400 MHz) &4
8.15 (d, J = 8.8 Hz, 2H, Ar-H), 7.32 (d, J = 8.8 Hz, 2H, Ar-H), 7.28 (d, J = 8.2 Hz, 1H, Ar-H), 7.02
(d,J=1.7 Hz, 1H, Ar-H), 6.93 (dd, J = 8.2, 1.7 Hz, 1H, Ar-H), 4.01 (s, 2H, CH2), 2.34 (s, 3H, CH3);
13C NMR (CDCls, 101 MHz) 8¢ 148.5 (C), 146.9 (C), 137.8 (C), 136.6 (C), 133.0 (C), 131.7 (CH),
129.7 (CH), 129.6 (CH), 127.8 (CH), 124.0 (CH), 41.2 (CH.), 20.2 (CHs); HRMS Found (TOF MS
ASAP+) [M+H]* 262.0640 C14H13NO2Cl requires 262.0635; m.p. = 78-79 °C.

Methyl 2-(3-chloro-4-methoxybenzyl)-3-nitrobenzoate (5ib)

CO,Me

COCC
NO, OMe

Following the general procedure, methyl 2-(bromomethyl)-3-nitrobenzoate (27.4 mg, 0.1
mmol) was reacted with (3-chloro-4-methoxyphenyl)boronic acid (55.9 mg, 0.3 mmol) for 72
h. The crude was purified by silica gel flash column chromatography (1:2->1:3->1:5 petrol 40-
60 °C/toluene) to yield product 5ib (16.8 mg, 0.050 mmol, 50%) as a yellow solid.

R¢ 0.30 (petrol 40-60 °C/toluene 1:3) ; vmax/cm™® 3022 (C-H Ar), 2954 (C-H), 1727 (C=0), 1606
(C-C Ar), 1532 (NO3), 1501 (C-H Ar), 1463 (C-C Ar), 1441 (C-C Ar), 1359 (NO>), 1286 (ester C-O)
1259 (C-0-C); H NMR (CDCl3, 400 MHz) &y 7.99 (dd, J = 8.0, 1.4 Hz, 1H, Ar-H), 7.86 (dd, J =
8.0, 1.4 Hz, 1H, Ar-H), 7.48 (dd, J = 8.0 Hz, 1H, Ar-H), 7.07 (d, J = 2.2 Hz, 1H, Ar-H), 6.90 (dd, J
=8.4,2.2 Hz, 1H, Ar-H), 6.79 (d, J = 8.4 Hz, 1H, Ar-H), 4.44 (s, 2H, CH.), 3.84 (s, 3H, CHs), 3.83
(s, 3H, CHs); 3C NMR (CDCls, 101 MHz) 8¢ 166.9 (C), 153.7 (C), 152.1 (C), 134.4 (C), 134.1 (C),
133.9 (CH), 132.1 (C), 130.4 (CH), 127.9 (CH), 127.7 (CH), 127.1 (CH), 122.5 (C), 112.1 (CH),
56.3 (CHs), 52.9 (CHs), 32.6 (CHz); HRMS Found (TOF MS ASAP+) [M-CHs]* 304.0379
CisH11NO4Cl requires 304.0377; m.p. = 80-81 °C.
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1-lodo-4-(4-nitrobenzyl)benzene (5la)

O,N’ ‘ ‘ N

Adapting the general procedure, 4-nitrobenzyl bromide (21.6 mg, 0.1 mmol) was reacted with
tris(4-iodophenyl)boroxine (110.4 mg, 0.16 mmol) added in two portions at the start and half-
way through the reaction time of 72 h. After the second addition the vial was sparged with
argon. Analysis of the crude 'H NMR spectra using 1,3,5 trimethoxybenzene as an internal
standard gave an NMR yield of 44%. Due to co-ellution with the benzyl bromide starting
material an accurate isolated yield for the reaction could not be determined. 5la was
previously unknown in the literature therefore, the co-elluted mixture was dissolved in
acetonitrile (5 mL) before potassium acetate (49 mg, 0.5 mmol) was added and the mixture
stirred overnight. Any remaining potassium acetate was removed by vacuum filtration before
the solvent was removed in vacuo. The resulting residue was then subjected to silica gel flash
column chromatography (4:1 petrol 40-60 °C/toluene) which yielded a pure sample of 5la as
a white solid which was then used for characterisation.

R¢0.22 (4:1 petrol 40-60 °C/toluene); Vmax/cm™ 3032 (C-H Ar), 2923 (C-H) 2855 (C-H), 1599 (C-
CAr), 1520 (NO3), 1493 (C-C Ar), 1484 (C-C Ar), 1400 (C-C Ar), 1346 (NO2); *H NMR (CDCls, 400
MHz) &y 8.15 (d, J = 8.8 Hz, 2H, Ar-H), 7.64 (d, J = 8.4 Hz, 2H, Ar-H), 7.31 (d, J = 8.8 Hz, 2H, Ar-
H), 6.92 (d, J = 8.4 Hz, 2H, Ar-H), 4.02 (s, 2H, CH,); 13C NMR (CDCls, 101 MHz) ¢ 148.1(C),
146.9 (C), 139.0 (C), 138.1 (CH), 131.1 (CH), 129.8 (CH), 124.0 (CH), 92.2 (C), 41.4 (CH2); HRMS
Found (TOF MS ASAP+) [M+H]* 339.9834 C13H11NO;I requires 339.9834; m.p. = 108-110 °C.
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