## **Electronic Supplementary Information (ESI):**

## Preparation of single crystal of pyrimidine-5-carbaldehyde 1:

Pyrimidine-5-carbaldehyde **1** *ca*. 10 mg was dissolved in 1 mL of acetone in sample tube. Vapor diffusion method with hexane under room temperature afforded single crystal of carbaldehyde **1** with enough quality for single crystal X-ray structural analysis and X-ray diffraction analysis.

## Solid-vapor phase absolute asymmetric synthesis of 5-pyrimidyl alkanol 2:

Pyrimidine-5-carbaldehyde 1 was sublimed at 100 °C under vacuum. Sublimed powder crystals of the carbaldehyde 1 (1.5 mg) were placed in slender glass tubes (30 mm  $\times$  4 mm ID). These slender tubes were placed into larger glass tubes ( $40 \text{ mm} \times 11 \text{ mm}$  ID), which were then placed in a desiccator (93 mm  $\times$  85 mm ID) filled with argon gas. One experimental set comprised 10 or 11 samples of carbaldehyde 1. A 1 M solution of *i*- $Pr_2Zn$  in toluene (3 mL) was placed in a reaction vessel (15 mm  $\times$  33 mm ID) in the desiccator. Pyrimidine-5-carbaldehyde 1 was exposed to *i*-Pr<sub>2</sub>Zn vapor for 16 h at room temperature. The reaction was quenched with 1 M hydrochloric acid. The reaction mixture was dissolved in ethyl acetate and water, then extracted with ethyl acetate. The organic layer was passed through silica gel NH<sub>2</sub> using ethyl acetate as eluent. The molar ratio of carbaldehyde 1 and alkanol 2 was determined using gas chromatography (GC) (Phenomenex Zebron ZB-5HT,  $30 \text{ m} \times 0.25 \text{ mm}$  ID  $\times 0.25 \text{ µm}$ ; T = 150 °C until 300 °C, with an increment of 20 °C/min; N<sub>2</sub> flow rate 1.0 mL/min; retention time 3.7 min for 1 and 5.6 min for 2). Calibration revealed that the molar ratio of 1 and 2 was essentially the same as the ratio of peak areas of 1 and 2 determined by GC. The absolute configurations and ee of pyrimidyl alkanol 2 were determined using supercritical fluid chromatography (SFC) on a chiral stationary phase (Daicel Chiralpak IB column,  $250 \times 4.6$  mm ID; eluent 9% methanol in CO<sub>2</sub> (v/v); flow rate 3.3 mL/min; 254 nm UV detector; retention time 1.8 min for (S)-2 and 2.1 min for (R)-2).

| Run <sup>[a]</sup> | Molar ratio of $1 : 2^{[b]}$ | Alkanol <b>2</b> <sup>[c]</sup> |            |  |
|--------------------|------------------------------|---------------------------------|------------|--|
|                    |                              | ee [%]                          | Config.    |  |
| C23                | 47:53                        | 5.0                             | S          |  |
| C24                | 55:45                        | 7.8                             | R          |  |
| C25                | 56:44                        | 2.0                             | R          |  |
| C26                | 55:45                        | 9.0                             | S          |  |
| C27                | 54:46                        | 0.8                             | R          |  |
| C28                | 62:38                        | 4.5                             | R          |  |
| C29                | 70:30                        | 6.3                             | S          |  |
| C30                | 55:45                        | 0.2                             | <i>(S)</i> |  |
| C31                | 61 : 39                      | 4.4                             | S          |  |
| C32                | 49 : 51                      | 7.1                             | S          |  |
| C33                | 71 : 29                      | 24.1                            | R          |  |
| D34                | 39:61                        | 2.2                             | S          |  |
| D35                | 62:38                        | 13.4                            | S          |  |
| D36                | 50 : 50                      | 5.0                             | R          |  |
| D37                | 39:61                        | 3.3                             | R          |  |
| D38                | 38:62                        | 2.6                             | R          |  |
| D39                | 36:64                        | 3.3                             | R          |  |
| D40                | 33:67                        | 5.7                             | R          |  |
| D41                | 17:83                        | 14.4                            | S          |  |
| D42                | 16:84                        | 4.9                             | R          |  |
| D43                | 8:92                         | 1.7                             | S          |  |
| D44                | 19:81                        | 3.2                             | S          |  |
| E45                | 78 : 22                      | 5.6                             | S          |  |
| E46                | 13:87                        | 9.5                             | R          |  |
| E47                | 66 : 34                      | 1.2                             | R          |  |
| E48                | 56:44                        | 0.5                             | S          |  |
| E49                | 70:30                        | 5.8                             | S          |  |
| E50                | 43 : 57                      | 0.1                             | <i>(S)</i> |  |
| E51                | 55:45                        | 0.7                             | R          |  |
| E52                | 43 : 57                      | 1.9                             | S          |  |
| E53                | 48 : 52                      | 1.6                             | S          |  |

**Table S1.** Absolute asymmetric synthesis of pyrimidyl alkanol **2** from powder crystals of pyrimidine-5-carbaldehyde **1** and vapor of diisopropylzinc in conjunction with asymmetric autocatalysis.

| E54 | 31:69   | 7.0          | S          |
|-----|---------|--------------|------------|
| E55 | 65 : 35 | 3.2          | R          |
| F56 | 84:16   | 2.6          | R          |
| F57 | 77:23   | 0.1          | <i>(S)</i> |
| F58 | 86:14   | 2.6          | R          |
| F59 | 80:20   | 1.6          | R          |
| F60 | 83:17   | 3.9          | R          |
| F61 | 79:21   | 3.3          | S          |
| F62 | 78:22   | 2.3          | R          |
| F63 | 88:12   | 2.8          | S          |
| F64 | 80:20   | 7.6          | S          |
| F65 | 79:21   | 1.1          | R          |
| F66 | 67:33   | 0.5          | R          |
| G67 | 48:52   | 4.4          | R          |
| G68 | 61 : 39 | 4.9          | R          |
| G69 | 44 : 56 | 9.5          | R          |
| G70 | 50:50   | 2.7          | R          |
| G71 | 41 : 59 | 2.1          | S          |
| G72 | 24:76   | 1.4          | S          |
| G73 | 48:52   | 1.9          | S          |
| G74 | 54:46   | 9.0          | R          |
| G75 | 15:85   | 1.5          | S          |
| G76 | 48:52   | 3.0          | S          |
| G77 | 63 : 37 | 10.1         | S          |
| H78 | 71:29   | 2.6          | S          |
| H79 | 74:26   | 5.1          | R          |
| H80 | 72:28   | 6.9          | S          |
| H81 | 79:21   | 3.4          | R          |
| H82 | 89:11   | $12.6^{[d]}$ | R          |
| H83 | 67:33   | 5.2          | R          |
| H84 | 88:12   | 4.6          | S          |
| H85 | 67:33   | 6.0          | S          |
| H86 | 69:31   | 0.7          | S          |
| H87 | 57:43   | 0.2          | <i>(S)</i> |
| H88 | 48 : 52 | 5.7          | S          |
| I89 | 93:7    | 2.2          | S          |

| 190  | 88:12   | 3.0 | S          |
|------|---------|-----|------------|
| I91  | 86 : 14 | 0.5 | S          |
| 192  | 84:16   | 1.1 | R          |
| 193  | 94 : 6  | 4.0 | R          |
| I94  | 88:12   | 0.3 | <i>(S)</i> |
| 195  | 81:19   | 0.7 | S          |
| I96  | 88:12   | 1.4 | S          |
| I97  | 92:8    | 1.2 | R          |
| I98  | 85 : 15 | 1.4 | R          |
| J99  | 87:13   | 0.3 | (R)        |
| J100 | 88:12   | 0.5 | R          |
| J101 | 91:9    | 0.1 | (R)        |
| J102 | 89:11   | 3.1 | R          |
| J103 | 86 : 14 | 1.2 | R          |
| J104 | 83:17   | 2.3 | R          |
| J105 | 92:8    | 0.2 | <i>(S)</i> |
| J106 | 91:9    | 5.0 | S          |
| J107 | 89:11   | 2.6 | R          |
| J108 | 87 : 13 | 4.4 | S          |
| K109 | 86:14   | 3.4 | S          |
| K110 | 75 : 25 | 1.2 | S          |
| K111 | 83:17   | 3.7 | R          |
| K112 | 89:11   | 1.2 | R          |
| K113 | 78:22   | 1.5 | R          |
| K114 | 83:17   | 0.2 | (R)        |
| K115 | 80:20   | 0.1 | (R)        |
| K116 | 78:22   | 0.9 | S          |
| K117 | 72:28   | 2.3 | R          |
| K118 | 71 : 29 | 4.9 | S          |
| L119 | 81 : 19 | 6.1 | S          |
| L120 | 90:10   | 4.7 | S          |
| L121 | 88:12   | 2.8 | S          |
| L122 | 73 : 27 | 1.8 | R          |
| L123 | 93:7    | 6.0 | S          |
| L124 | 88:12   | 4.1 | R          |
| L125 | 84:16   | 3.4 | R          |

| L126 | 85:15 | 5.2  | R |
|------|-------|------|---|
| L127 | 83:17 | 3.6  | R |
| L128 | 88:12 | 2.8  | R |
| L129 | 91:9  | 27.2 | S |

[a] In the series A–L, each set of reactions was run simultaneously in the same desiccator. Each glass tube was used in only one reaction.

[b] Determined using GC.

[c] Determined using supercritical fluid chromatography (SFC) analysis on a chiral stationary phase.

[d] Chiral SFC chromatogram was shown in Fig. 3S.

Fig. S1. Single crystal of pyrimidine-5-carbaldehyde 1.



Powder X-ray diffractometry (XRD) of crystals of pyrimidine-5-carbaldehyde 1: It can be seen that the diffraction peaks at  $5.5^{\circ}$ ,  $10.9^{\circ}$ ,  $22.0^{\circ}$ ,  $27.6^{\circ}$ ,  $33.3^{\circ}$ , and  $39.1^{\circ}$  correspond to (0 0 2), (0 0 4), (0 0 8), (0 0 10), (0 0 12), and (0 0 14) crystal planes respectively.

**Fig. S2**. X-ray powder diffraction patterns. (a) Single crystal of pyrimidine-5carbaldehyde 1 ( $P2_1/n$ : observed pattern). (b) Sublimated powder crystal of carbaldehyde 1 (observed pattern).



**Chi-squared test**: Chi-squared test for goodness of fit ( $\chi_{GF}^2$ ) and Chi-squared test for independence  $(\chi_1^2)$  were shown in Tables S2 and S3, respectively. The results affording alkanol 2 with <0.5% ee were excluded.

|                                      | Pyrimidyl alkanol <b>2</b> <sup>[a]</sup>    |                           | Total |
|--------------------------------------|----------------------------------------------|---------------------------|-------|
|                                      | R                                            | S                         |       |
| Observed frequency $O_i$             | 61                                           | 58                        | 119   |
| Theoretical probability              | 0.5                                          | 0.5                       | 1     |
| Theoretical frequency E <sub>i</sub> | 59.5                                         | 59.5                      | 119   |
| $\chi_{ m GF}^2$                     | $P = \sum_{i=1}^{k} \frac{(O_i - E_i)}{E_i}$ | $\frac{)^2}{2} = 0.07563$ |       |

Table S2 Chi d tost fo 4... cc+( 2)

(Significant probability: p = 0.78)

| Table S3. | Chi-squared | l test for | independence | $(\gamma_I^2)$ . |
|-----------|-------------|------------|--------------|------------------|
|           |             |            |              |                  |

|        |       | Neighboring sample |    | Total |
|--------|-------|--------------------|----|-------|
|        |       | R                  | S  |       |
| Sample | R     | 32                 | 29 | 61    |
|        | S     | 29                 | 29 | 58    |
|        | Total | 61                 | 58 | 119   |



(Significant probability: p = 0.79)

**Fig. S3.** Chiral SFC chromatogram of the reaction mixture (Table S1, run H82). The reaction mixture was analyzed after working up. SFC conditions: column, Daicel Chiralpak IB ( $250 \times 4.6 \text{ mm ID}$ ); eluent, 9% methanol in CO<sub>2</sub> (v/v); flow rate, 3.3 mL/min; detection, 254 nm UV detector; retention time ( $t_R$ ) 1.96 min for (*S*)-alkanol **2** and 2.21 min for (*R*)-alkanol **2**). The areas of 43.687% for (*S*)-**2** and 56.313% for (*R*)-**2**, thus, analysed product is *R*-configured alkanol **2** with 12.6% ee.

