Supplementary Data for:

Carbonyl and Olefin Hydrosilylation Mediated by an Air-Stable Phosphorus(III) Dication Under Mild Conditions

Ryan J. Andrews, Saurabh S. Chitnis Douglas W. Stephan*

Table of Contents

Table of Contents ...1
1. General Considerations ..2
1.1. Chemicals and Materials...2
1.2. Physical Methods..2
2. Catalyst Synthesis ...3
3. General Procedure for Hydrosilylation Catalysis ..3
4. Catalysis Optimization ...4
4.1. Hydrosilylation of 4-methylbenzaldehyde with Et₃SiH with different solvents4
4.2. Hydrosilylation of 4-methylbenzaldehyde with Et₃SiH without a solvent10
4.3. Hydrosilylation of 4-methylbenzaldehyde with silanes and siloxanes11
5. Catalytic Hydrosilylation Reactions with Triethylsilane...27
5.1. Catalytic Hydrosilylation of Aldehydes ...27
5.2. Catalytic Hydrosilylation of Ketones ...46
5.3. Catalytic Reductive Deoxygenation of Ketones ..64
5.4. Catalytic Hydrosilylation of Olefins ...88
5.5. Catalytic Reaction with 1 Generated in-situ ...106
5.6. Attempted Catalytic Reactions/Inhibition involving Alkynes ..107
6. Mechanistic Considerations ...114
6.1. Monitoring 1 in situ by ³¹P NMR Spectroscopy ...114
6.2. Attempted Synthesis of a hydride containing intermediate ...116
7. References ...118
1. General Considerations

1.1. Chemicals and Materials

All manipulations were performed under an atmosphere of dry and deoxygenated N\textsubscript{2} under standard glovebox or Schlenk techniques unless otherwise stated. All glassware was dried in an oven at 220°C followed by dynamic vacuum over several hours prior to use. After suitable drying procedures, all solvents were stored over 4 Å molecular sieves for a minimum of 24 hours prior to use. 4 Å molecular sieves were activated by heating in a sand bath (> 200°C) under dynamic vacuum over 48 hours. Toluene, pentane, and diethyl ether (Et\textsubscript{2}O) were purchased from Sigma Aldrich and were dried using a Grubbs-type Innovative Technologies solvent purification system. Dichloromethane (CH\textsubscript{2}Cl\textsubscript{2}) was purchased from Sigma Aldrich and was dried using a Grubbs-type Innovative Technologies solvent purification system followed by distillation from CaH\textsubscript{2}. Chlorobenzene, acetonitrile-d\textsubscript{3} (CD\textsubscript{3}CN), 1,2-dichlorobenzene (o-C\textsubscript{6}H\textsubscript{4}Cl\textsubscript{2}), 1,2-difluorobenzene (o-C\textsubscript{6}H\textsubscript{4}F\textsubscript{2}), chloroform-d (CDCl\textsubscript{3}) were distilled from CaH\textsubscript{2} and tetrahydrofuran (THF) was distilled from sodium-benzophenone prior to use. Triethylsilane (Et\textsubscript{3}SiH) was purchased from Tokyo Chemical Industry (TCI) America and was used without further purification. Mesitylene and hexafluorobenzene (C\textsubscript{6}F\textsubscript{6}) were purchased from Sigma Aldrich and were used without further purification. All other silanes and substrates were used as purchased without further purification unless otherwise stated. Hamilton micro-syringes were used to transfer small amounts of liquid substrates (<25 μL). Small scale catalytic reactions were conducted in an NMR tube sealed with electrical tape and parafilm, containing standards of mesitylene and hexafluorobenzene. Plastic syringes and disposable needles were evacuated in the antechamber of the glovebox overnight prior to use.

1.2. Physical Methods

All NMR spectra were collected at 298 K on Bruker Avance III 400, Agilent DD2 400, Agilent DD2 500, or Agilent DD2 600 spectrometers in 3 or 5 mm diameter NMR tubes or in a J-Young tube. 1H NMR spectra are referenced related to residual deuterated-solvent or protio-solvent signals. 19F NMR spectra are referenced to an external standard of hexafluorobenzene (capillary containing hexafluorobenzene and mesitylene in CDCl\textsubscript{3}). An external standard of mesitylene was used to measure the conversion of starting materials to products over time as monitored by NMR studies. Departmental facilities were used for mass spectrometry (DART: JEOL AccuTOF). GC-MS spectra were obtained on an Agilent Technologies 5975C VL MSD with TripleAxis Detector and 7890A GC System: Agilent Column 19091S-433 (30m × 250μm × 0.25μm) with helium as the carrier gas. The following 53-minute program was used to analyze samples: initial temperature of 50 °C (inlet temperature 250 °C), increase temperature 10 °C/min to 250 °C and hold for 3 minutes (23 minutes total), increase temperature 1 °C/min to 280 °C (30 minutes total). The solvent delay was 5 mins (DCM) with an injection volume of 1 μL.
2. Catalyst Synthesis

\[\text{[TerpyPPh][B(C}_6\text{F}_5)_4]_2\] (1)

A solution of 2,2:6′,2″-terpyridine (100 mg, 0.428 mmol) in 5 mL of dichloromethane was added over 5 minutes to a suspension of Na[B(C}_6\text{F}_5)_4] (602 mg, 0.858 mmol) and PhPCl\(_2\) (77 mg, 0.43 mmol) in 5 mL of dichloromethane. Immediately, a bright yellow solution was produced and stirring was maintained for an additional hour. The solution was filtered and the volatiles were removed \textit{in vacuo} to afford a yellow oil. After washing with pentane (3 x 5 mL) and drying \textit{in vacuo}, (1) was produced as a yellow powder (719 mg, 0.423 mmol, 98.8% yield). The characterization of (1) was consistent with reported literature values.

3. General Procedure for Hydrosilylation Catalysis

Representative procedure for the hydrosilylation of ketones and aldehydes

A solution of the corresponding ketone or aldehyde (0.05 mmol) and triethylsilane (8.8 μL, 0.055 mmol) in dichloromethane (0.7 mL) was added to an NMR tube containing an external standard of mesitylene and hexafluorobenzene in CDCl\(_3\). An initial NMR spectrum was taken and then 1 (4.2 mg, 5 mol%) was added. The subsequent reaction was performed at either room temperature or in a monitored oil bath at 50°C. Conversion and yield were monitored by \^1H NMR spectroscopy. 1 can be removed \textit{via} the addition of 0.5 mL of pentane to the reaction mixture followed by filtration through a plug of silica gel, eluting with additional pentane (1 mL). Removal of the volatiles \textit{in vacuo} affords the product. GCMS data was collected by dissolving the product in 1.2mL of dichloromethane.

Representative procedure for the hydrodeoxygenation of ketones

A solution of the corresponding ketone or aldehyde (0.05 mmol) and triethylsilane (17.6 μL, 0.11 mmol) in dichloromethane (0.7 mL) was added to an NMR tube containing an external standard of mesitylene and hexafluorobenzene in CDCl\(_3\). An initial NMR spectrum was taken and then 1 (4.2 mg, 5 mol%) was added. The subsequent reaction was performed at either room temperature or in a monitored oil bath at 50°C. Conversion and yield were monitored by \^1H NMR spectroscopy. 1 can be removed \textit{via} the addition of 0.5 mL of pentane to the reaction mixture followed by filtration through a plug of silica gel, eluting with additional pentane (1 mL). Removal of the volatiles \textit{in vacuo} affords the product. GCMS data was collected by dissolving the product in 1.2mL of dichloromethane.

Representative procedure for the hydrosilylation of olefins or alkynes

A solution of the corresponding olefin or alkyne (0.05 mmol) and triethylsilane (8.8 μL, 0.055 mmol) in dichloromethane (0.7 mL) was added to an NMR tube containing an external standard of mesitylene and hexafluorobenzene in CDCl\(_3\). An initial NMR spectrum was taken and then 1 (4.2 mg, 5 mol%) was added. The subsequent reaction was performed at either room temperature
or in a monitored oil bath at 50°C. Conversion and yield were monitored by \(^1\)H NMR spectroscopy. 1 can be removed \textit{via} the addition of 0.5 mL of pentane to the reaction mixture followed by filtration through a plug of silica gel, eluting with additional pentane (1 mL). Removal of the volatiles \textit{in vacuo} affords the product. GCMS data was collected by dissolving the product in 1.2mL of dichloromethane.

Representative procedure for catalyses with isolated products.
A solution of 1 (84 mg, 0.05 mmol) in dichloromethane (1 mL) was added to a solution of the corresponding substrate (1 mmol) and triethylsilane (176 mg, 1.1 mmol) in dichloromethane (10 mL). The resulting yellow solution was stirred for 24 hours, before 5 mL of pentane was added before filtering through a plug of silica gel, and eluted with additional pentane. The volatiles were removed \textit{in vacuo} to yield the product.

Representative procedure for reactions performed under ambient air
1 (4.2 mg, 5 mol %) was let stand in ambient air for 6 hours before being added to a solution of the corresponding substrate (0.05 mmol) and triethylsilane (8.8 \(\mu\)L, 0.055 mmol) in dichloromethane (0.7 mL), which had been placed under a stream of air for 2 minutes. The resulting mixture was added to an NMR tube and was reacted for the required amount of time as monitored by \(^1\)H NMR spectroscopy.

4. Catalysis Optimization

4.1. Hydrosilylation of 4-methylbenzaldehyde with Et\(_3\)SiH with different solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Temperature</th>
<th>Time</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>25°C</td>
<td>13 hr</td>
<td>>99%</td>
</tr>
<tr>
<td>Toluene</td>
<td>25°C</td>
<td>24 hr</td>
<td>0%</td>
</tr>
<tr>
<td>(\text{C}_6\text{H}_5\text{Cl})</td>
<td>25°C</td>
<td>24 hr</td>
<td>41%</td>
</tr>
<tr>
<td>THF</td>
<td>25°C</td>
<td>13 hr</td>
<td>26%</td>
</tr>
<tr>
<td>CDCl(_3)</td>
<td>25°C</td>
<td>24 hr</td>
<td>80%</td>
</tr>
<tr>
<td>(\text{o-C}_6\text{H}_4\text{Cl}_2)</td>
<td>25°C</td>
<td>13 hr</td>
<td>>99%</td>
</tr>
<tr>
<td>(\text{o-C}_6\text{H}_4\text{F}_2)</td>
<td>25°C</td>
<td>13 hr</td>
<td>>99%</td>
</tr>
<tr>
<td>Et(_2)O</td>
<td>25°C</td>
<td>13 hr</td>
<td>0%</td>
</tr>
<tr>
<td>CD(_3)CN</td>
<td>25°C</td>
<td>24 hr</td>
<td><10%</td>
</tr>
<tr>
<td>None</td>
<td>25°C</td>
<td>13 hr</td>
<td>>99%</td>
</tr>
</tbody>
</table>

Table S1. Summary of the solvent optimization for the catalytic hydrosilylation of 4-methylbenzaldehyde.
Figure S1. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S2. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in toluene. The NMR spectra are referenced to the CH$_3$C$_6$H$_5$ resonance at 2.09 ppm.

Figure S3. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in CH$_3$Cl. The NMR spectra are referenced to the CH$_3$Cl resonance at 7.14 ppm.
Figure S4. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in tetrahydrofuran. The NMR spectra are referenced to the THF resonance at 1.75 ppm.

Figure S5. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in orthodichlorobenzene. The NMR spectra are referenced to the C$_6$H$_4$Cl$_2$ signal at 7.11 ppm.
Figure S6. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in diethyl ether. The NMR spectra are referenced to the Et$_2$O signal at 1.21 ppm.

Figure S7. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in orthodifluorobenzene. The NMR spectra are referenced to the C$_6$F$_4$H$_4$ signal at 6.81 ppm.
After 60 mins.

After 24 hours

Figure S8. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in chloroform-d. The NMR spectra are referenced to the CDCl$_3$ signal at 7.27 ppm.
Figure S9. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in acetonitrile-d3. The NMR spectra are referenced to the CD$_3$CN signal at 1.94 ppm.

4.2. Hydrosilylation of 4-methylbenzaldehyde with Et$_3$SiH without a solvent

![Chemical structure]

Procedure: 4-methylbenzaldehyde (5.9 μL, 0.050 mmol) and Et$_3$SiH (48 μL, 0.30mmol) was added to 1 (4.2 mg, 5 mol%) and the resulting suspension was stirred. After 13 hours, the mixture was dissolved in CH$_2$Cl$_2$ and the conversion was immediately monitored by 1H NMR spectroscopy.
Figure S10. 1H NMR (298K, 400 MHz) spectrum for the catalytic hydrosilylation of 4-methylbenzaldehyde without a solvent after 13 hours. NMR spectrum is referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.

4.3. Hydrosilylation of 4-methylbenzaldehyde with silanes and siloxanes

\[
\begin{align*}
\text{H} & \quad + \quad 2.1 \text{ eq Et}_3\text{SiH} \quad \xrightarrow{5 \text{ mol} \% \ 1} \quad \text{CH}_2\text{Cl}_2 \\
\text{O} & \quad \text{H} & \quad \text{O} & \quad \text{H} & \quad [\text{Si}]
\end{align*}
\]

* = equivalents per Si-H present in silane or siloxane

To an NMR tube containing 4-methylbenzaldehyde (5.9 μL, 0.05 mmol) and the corresponding silane or siloxane (0.055 mmol) in dichloromethane (0.7 mL) was added 1 (4.2 mg, 5 mol%). The resulting mixture was settled in an NMR tube and reacted at room temperature. Conversion was monitored by 1H NMR spectroscopy.

<table>
<thead>
<tr>
<th>Silane/Siloxane</th>
<th>Time</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et$_3$SiH</td>
<td>24 hr</td>
<td>>99%</td>
</tr>
<tr>
<td>(nHex)$_3$SiH</td>
<td>24 hr</td>
<td>26%</td>
</tr>
<tr>
<td>(Me$_3$Si)$_3$SiH</td>
<td>24 hr</td>
<td>0%</td>
</tr>
<tr>
<td>Ph$_2$MeSiH</td>
<td>24 hr</td>
<td>59%</td>
</tr>
<tr>
<td>Ph$_3$SiH</td>
<td>24 hr</td>
<td>0%</td>
</tr>
<tr>
<td>Ph$_2$SiH</td>
<td>24 hr</td>
<td>0%</td>
</tr>
</tbody>
</table>
Table S2. Summary of the catalytic hydrosilylation reactions of 4-methylbenzaldehyde with different silanes and siloxanes.

<table>
<thead>
<tr>
<th>Silane/Siloxane</th>
<th>Time</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C₆F₅)₃SiH</td>
<td>24 hr</td>
<td>0%</td>
</tr>
<tr>
<td>(EtO)₃SiH</td>
<td>24 hr</td>
<td>0%</td>
</tr>
<tr>
<td>(NMe₂)₃SiH</td>
<td>30 min</td>
<td>>99%</td>
</tr>
<tr>
<td>Pentamethyldisiloxane [Me₂SiOSi(Me₂)H]</td>
<td>30 min</td>
<td>>99%</td>
</tr>
<tr>
<td>1,1,3,3-tetramethyldisiloxane [(Me₂HSi)₂O]</td>
<td>30 min</td>
<td>>99%</td>
</tr>
<tr>
<td>1,1,1,2,2,3,3-heptamethyltrisiloxane</td>
<td>30 mins</td>
<td>>99%</td>
</tr>
<tr>
<td>1,1,1,2,2,3,3-heptamethyltrisiloxane¹</td>
<td>5 hr</td>
<td>68%</td>
</tr>
<tr>
<td>1,1,1,2,2,3,3-heptamethyltrisiloxane¹</td>
<td>24 hr</td>
<td>75%</td>
</tr>
<tr>
<td>(Me₃SiO)₃SiH</td>
<td>24 hr</td>
<td>0%</td>
</tr>
<tr>
<td>Poly(methylhydrosiloxane) (PMHS)</td>
<td>24 hr</td>
<td>23%</td>
</tr>
</tbody>
</table>

¹Reaction performed on benchtop, after components were mixed under ambient conditions

Figure S11. ¹H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tris(n-hexyl)silane. The NMR spectra are referenced to the CH₂Cl₂ resonance at 5.30 ppm.
Figure S12. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with triphenylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S13. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tris(trimethylsilyl)silane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
After 60 minutes

After 24 hours

Figure S14. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with diphenylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S15. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tris(pentafluorophenyl)silane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S16. 19F{H} NMR (298K, 377 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tris(pentafluorophenyl)silane. The NMR spectra are referenced to the hexafluorobenzene resonance at -163.0 ppm by using an external standard of hexafluorobenzene and mesitylene in CDCl$_3$.
Figure S17. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with methyldiphenylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S18. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tris(dimethylamino)silane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm. NMR spectrum taken after 60 minutes.
Figure S19. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with triethoxysilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S20. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tris(trimethylsiloxy)silane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S21. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with polymethylhydrosiloxane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S22. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with tetramethyldisiloxane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm. NMR spectrum taken after 60 minutes.
Figure S23. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with pentamethyldisiloxane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm. NMR spectrum recorded after 30 minutes.
Figure S24. 1H NMR (CH$_2$Cl$_2$, 298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with 1,1,1,2,2,3,3-heptamethyltrisiloxane. Reaction performed on the benchtop with dry solvent. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S25. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with 1,1,1,2,2,3,3-heptamethyltrisiloxane. Reaction performed on the benchtop with dry solvent. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
5. Catalytic Hydrosilylation Reactions with Triethylsilane

5.1. Catalytic Hydrosilylation of Aldehydes

Triethyl(benzyloxy)silane (entry 1): %Conversion (%Yield): >99% (92.5%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.2 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.40 – 7.25 (m, 5H), 4.54 (s, 2H), 0.95 (t, $J = 7.9$ Hz, 9H), 0.52 (q, $J = 7.9$ Hz, 6H). GCMS (m/z): 107.1 ([M-SiEt$_3$]$^+$, calc’d 107.05).

Figure S26. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of benzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((4-nitrobenzyl)oxy)silane (entry 2): %Conversion (%Yield): >99% (98.9%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.3 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 8.14 (d, $J = 8.6$ Hz, 2H), 7.48 (d, $J = 8.6$ Hz, 2H), 4.81 (s, 2H), 0.96 (t, $J = 8.0$ Hz, 9H), 0.65 (q, $J = 8.0$ Hz, 6H).

![Figure S27](image-url)

Figure S27. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-nitrobenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((4-bromobenzyl)oxy)silane (entry 3): %Conversion (%Yield): >99% (83.5%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 3 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.49 – 7.41 (m, 2H), 7.21 (t, $J = 8.4$ Hz, 2H), 4.64 (s, 2H), 0.90 (t, $J = 7.9$Hz, 9H), 0.49 (q, $J = 7.9$H, 6H).

Figure S28. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-bromobenzaldehyde in dichloromethane with triethylysilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((4-chlorobenzyl)oxy)silane (Entry 4): >99% (33%) over 90 minutes as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.4 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.32 – 7.25 (m, 4H), 4.65 (s, 2H), 0.94 (t, $J = 7.9$ Hz, 9H), 0.62 (q, $J = 7.9$ Hz, 6H). GCMS: 140.9 ([M-SiEt$_3$]$^+$, calc’d. 141.01).

Figure S29. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-chlorobenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((2-chlorobenzyl)oxy)silane (Entry 5): >99% (87.0%) over 90 minutes as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.4 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.55 (d, $J = 7.7$ Hz, 1H), 7.36 - 7.24 (m, 2H), 7.21 – 7.14 (m, 2H), 4.76 (s, 2H), 0.96 (t, $J = 8.0$ Hz, 9H), 0.66 (q, $J = 8.0$ Hz, 6H). GCMS: 227.1 ([M-CH$_2$CH$_3$]$^+$, calc’d. 227.07).

Figure S30. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 2-chlorobenzaldehyde in dichloromethane with triethoxysilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((2-bromobenzyl)oxy)silane (Entry 6): %Conversion (%Yield): >99% (50%) over 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.5 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.49 (d, $J = 8.1$ Hz, 1H), 7.43 (d, $J = 7.9$ Hz, 1H), 7.30 (t, $J = 8.1$ Hz, 1H), 7.10 (t, $J = 7.9$ Hz, 1H), 4.66 (s, 2H), 0.92 (t, $J = 7.9$ Hz, 9H), 0.62 (q, $J = 7.9$ Hz, 6H). GCMS: 185.0 ([M-SiEt$_3$]$^-$, calc’d. 184.96).

Figure S31. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 2-bromobenzaldehyde in dichloromethane with triethlysilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((4-fluorobenzyl)oxy)silane (Entry 7): %Conversion (%Yield): 56.3% (56.3%) over 24 hours as determined by $^{19}\text{F}$$^{1}\text{H}$ NMR spectroscopy using an external standard of mesitylene and hexafluorobenzene in CDCl$_3$. Characterization corresponds with reported literature values.6 ^1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.30 (t, $J = 8.7$ Hz, 2H), 7.00 (t, $J = 8.7$ Hz, 2H), 4.48 (s, 2H), 1.01 – 0.86 (m, overlapping signals with residual Et$_3$SiH signals, 9H), 0.50 (q, $J = 7.9$ Hz, 6H). $^{19}\text{F}$$^{1}\text{H}$ NMR (376 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) -116.9 (1F). GCMS (m/z): 125.0 ([M-SiEt$_3$]$^+$, calc’d. 125.04).

Figure S32. ^1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-fluorobenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S33. 19F NMR (298K, 376 MHz) spectra for the catalytic hydrosilylation of 4-fluorobenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the hexafluorobenzene signal at -163 ppm.
Triethyl((3,4-dichlorobenzyl)oxy)silane (Entry 8): %Conversion (%Yield): 99% (95%) over 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. 1H NMR (500 MHz, 298K, CDCl$_3$): δ (ppm) 7.45 – 7.44 (m, 1H, Ar-C(CH$_2$)CHC(Cl)), 7.40 (d, $J = 8.0$ Hz, Ar-C(Cl)C(H)C(H)), (d, $J = 8.3$ Hz, Ar-C(Cl)C(H)C(H)), 7.17 (dm, $J = 8.0$ Hz, Ar-C(Cl)C(H)C(H)), 4.69 (s, 2H, Ar-CH$_2$), 0.99 (t, $J = 7.7$ Hz, 9H, SiCH$_2$CH$_3$), 0.67 (q, $J = 7.7$ Hz, 6H, SiCH$_2$CH$_3$). 13C{1H} NMR (126 MHz, 298K, CDCl$_3$): δ (ppm) 141.9, 132.5, 130.8, 130.3, 128.2, 125.5, 63.5, 6.9, 4.6. GCMS (m/z): 291.1 ([M+H]$^+$, calc’d: 291.07).

Figure S34. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 3,4-dichlorobenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S35. 1H NMR (298K, 500 MHz) spectrum for triethyl((3,4-dichlorobenzyl)oxy)silane. The NMR spectrum is referenced to the CDCl$_3$ resonance at 7.27 ppm.

Figure S36. 13C(1H) NMR (CDCl$_3$, 298K, 126 MHz) spectrum for triethyl((3,4-dichlorobenzyl)oxy)silane. The NMR spectrum is referenced to the CDCl$_3$ resonance at 77.2 ppm.
Triethyl(4-methylbenzyloxy)silane (Entry 9): %Conversion (%Yield): 99% (96%) over 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.4 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.21 (d, $J = 7.8$ Hz, 2H), 7.13 (d, $J = 7.8$ Hz, 2H), 4.46 (s, 2H), 2.31 (s, 3H), 0.91 (t, $J = 8.0$ Hz, 9H), 0.50 (1, $J = 8.0$ Hz, 6H). GCMS: 207.1 ([M-CH$_2$CH$_3$]$^+$, calc’d. 207.12).

Figure S37. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylbenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((3-methoxybenzyl)oxy)silane (entry 10): %Conversion (%Yield): >99% (97.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.7 1H NMR (500 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.23 (t, $J = 7.8$ Hz, 1H), 6.93 – 6.88 (m, 2H), 6.82 – 6.78 (m, 2H), 4.50 (s, 2H), 3.75 (s, J 3H), 0.92 (t, $J = 7.9$ Hz, 9H), 0.52 (q, $J = 7.9$ Hz, 6H). 13C{1H} NMR (500 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 160.0, 140.1, 129.3, 119.8, 113.0, 112.9, 72.0, 55.1, 6.5, 6.3.

Figure S38. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 3-methoxybenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S39. 1H NMR (298K, 500 MHz) spectrum for triethyl((3-methoxybenzyl)oxy)silane. The NMR spectrum is referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S40. $^{13}\text{C}^{1\text{H}}$ NMR (298K, 126 MHz) spectrum for triethyl((3-methoxybenzyl)oxy)silane. The NMR spectrum is referenced to the CH$_2$Cl$_2$ resonance at 54.0 ppm.
Triethyl((3,5-dimethoxybenzyl)oxy)silane (Entry 11): %Conversion (%Yield): >99% (98.7%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.8 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 6.54 (s, 2H), 6.41 (s, 1H), 4.54 (s, 2H), 3.81 (s, 6H), 1.04 – 0.95 (m, 9H), 0.56 (q, $J = 7.9$ Hz, 6H).

Figure S41. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 3,5-dimethoxybenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
1,4-bis((trimethylsilyl)oxy)methyl)benzene (Entry 12): %Conversion (%Yield): 94.4 % (93.8%) after 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 9 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.30 (s, 4H), 4.53 (m, 4H), 1.01 – 0.88 (m, 18H), 0.60 – 0.48 (m, 12H).

Figure S42. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of terephthalidcarboxaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((2-methylbenzyl)oxy)silane (Entry 13): %Conversion (%Yield): 24.7% (23.8%) after 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.10 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.33 – 7.30 (m, 1H), 7.18 – 7.11 (m, 3H), 4.55 (s, 2H), 2.29 (s, 3H), 0.98 (t, $J = 8.0$ Hz, 9H), 0.50 (q, $J = 8.0$ Hz, 6H). GCMS: 121.1 ([M-SiEt$_3$]$^+$, calc’d. 121.07).

Figure S43. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 2-methylbenzaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
2,4,6-trimethylbenzaldehyde (Entry 14): %Conversion: <1% over 24 hours as determined by \(^1\)H NMR spectroscopy using an external standard of mesitylene in CDCl\(_3\).

Figure S44. \(^1\)H NMR (298K, 400 MHz) spectra for the attempted catalytic hydrosilylation of mesitaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH\(_2\)Cl\(_2\) resonance at 5.30 ppm.
Triethyl(2,2-diphenylethoxysilane (Entry 15): >99% (97.7%) over 90 minutes as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.11 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.31 - 7.21 (m, 7H), 7.20 – 7.11 (m, 3H), 4.14 (m, 2H), 3.98 (m, 1H), 0.86 (t, J = 8.0 Hz, 6H), 0.52 (q, J = 8.0 Hz, 6H).

Figure S45. 1H NMR (298K, 400 MHz) spectra for the attempted catalytic hydrosilylation of diphenylacetaldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl(isopentyloxy)silane (Entry 16): %Conversion (%Yield): >99% (99.0%) after 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.12 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 3.36 (t, $J = 6.7$ Hz, 2H), 1.63 (septet, $J = 6.6$ Hz, 1H), 1.43 – 1.33 (m, 2H), 0.96 – 0.82 (overlapping signals, 15H), 0.50 (q, $J = 7.7$ Hz, 6H).

![Figure S46. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of isovaleraldehyde in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.](image-url)
5.2. Catalytic Hydrosilylation of Ketones

Triethyl(2,2,2-trifluoro-1-phenylethoxy)silane (Entry 17): %Conversion (%Yield): 66.4% (60.9%) as determined by 19F{1H} NMR spectroscopy using an external standard of mesitylene and hexafluorobenzene in CDCl$_3$. Characterization corresponds with reported literature values.13 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 0.57 (m, 9H, overlapping with residual triethylsilane signal), 0.87 (t, $J = 8.0$ Hz, 9H), 4.93 (q, $J = 6.6$ Hz, 1H), 7.38 – 7.31 (m, 3H), 7.47 – 7.40 (m, 2H). 19F{1H} NMR (377 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) -79.9 (3F).

![Figure S47. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 2,2,2-trifluoroacetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.](image-url)
Figure S48. 19F{1H} NMR (298K, 376 MHz) spectra for the catalytic hydrosilylation of 2,2,2-trifluoroacetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the hexafluorobenzene signal at -163 ppm.
Triethyl((4,4,4-trifluorobutan-2-yl)oxy)silane (Entry 18): %Conversion (%Yield): 16% (16%) as determined by 19F NMR spectroscopy using an external standard of mesitylene and hexafluorobenzene in CDCl$_3$. The reaction was performed at 50°C and the product was not isolated. 1H NMR (400 MHz, 298K, CDCl$_3$): δ (ppm) 4.21 – 4.15 (m, 1H, CHOSi), 1.26 (d, $J = 6.7$ Hz, 3H, CH$_3$), 0.93 (t, $J = 7.9$ Hz, 9H, OSiCH$_2$CH$_3$), 0.51 (q, $J = 7.9$ Hz, 6H, OSiCH$_2$CH$_3$), CH$_2$CF$_3$ signal was not observed. 19F NMR (376 MHz, 298K, CDCl$_3$): δ (ppm) -65.2 (t, 3J$_{H-F}$ = 11.0 Hz). No hydrodefluorination was observed.

Figure S49. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4,4,4-trifluorobutan-2-one in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S50. 19F NMR (298K, 376 MHz) spectra for the catalytic hydrosilylation of 4,4,4-trifluorobutan-2-one in dichloromethane with triethyilsilane. The NMR spectra are referenced to the hexafluorobenzene signal at -163 ppm.
Triethyl(1-(4-(methylsulfonyl)phenyl)ethoxy)silane (Entry 19): %Conversion (%Yield): >99% (96.8%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. 1H NMR (400 MHz, 298K, C$_6$D$_6$): δ (ppm) 7.78 (d, $J = 8.3$ Hz, 2H, Ar-H), 7.20 (d, $J = 8.3$ Hz, 2H, Ar-H), 4.65 (q, $J = 6.4$ Hz, 1H, CH(OSiEt$_3$)), 2.28 (s, 3H, Ar-S(O)$_2$CH$_3$), 1.24 (d, $J = 6.4$ Hz, 3H, C(OSi)CH$_3$), 0.92 (t, $J = 8.2$ Hz, 9H, OSiCH$_2$CH$_3$), 0.52 (dq, $J = 8.2$ Hz, $J = 2.5$ Hz, 6H, OSiCH$_2$CH$_3$). 13C{1H} NMR (101 MHz, 298K, C$_6$D$_6$): δ (ppm) 152.8, 140.5, 127.8, 126.1, 70.4, 43.8, 27.2, 7.0, 5.1. GCMS: 286.1 ([M-CH$_2$CH$_3$]$^+$, calc’d. 286.11).

Figure S51. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-methylsulfonylacetophenone in dichloromethane with 1 equivalent of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S52. 1H NMR (400 MHz, 298K, CDCl$_3$) of triethyl(1-(4-(methylsulfonyl)phenyl)ethoxy)silane.

Figure S53. 13C {1H} NMR (101 MHz, 298K, C$_6$D$_6$) of triethyl(1-(4-(methylsulfonyl)phenyl)ethoxy)silane.
Triethyl(1-(4-nitrophenyl)ethoxy)silane (Entry 20): %Conversion (%Yield): >99% (92%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.2 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 8.08 (d, $J = 8.4$ Hz, 2H), 7.45 (d, $J = 8.4$ Hz, 2H), 4.90 (q, $J = 6.5$ Hz, 1H), 1.35 (d, $J = 6.5$ Hz, 3H), 0.84 (t, $J = 7.6$ Hz, 9H), 0.52 (q, $J = 7.6$ Hz, 6H).

Figure S54. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-nitroacetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
(Isopropoxy)triethylsilane (Entry 21): %Conversion (%Yield): >99% (98.3%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.14 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 3.66-3.59 (m, 1H), 1.05 (d, $J = 6.1$ Hz, 6H), 0.90 (t, $J = 7.9$ Hz, 9H), 0.50 (1, $J = 7.9$ Hz, 6H).

Figure S55. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of acetone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
(Cyclohexyloxy)triethylsilane (Entry 22): %Conversion (%Yield): >99% (98.9%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.15 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 3.32 – 3.24 (m, 1H), 1.86 – 1.76 (m, 2H), 1.72 – 1.64 (m, 2H), 1.54 – 1.45 (m, 1H), 0.92 t, $J = 8.0$ Hz, 9H), 0.50 (q, $J = 8.0$ Hz, 6H).

Figure S56. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of cyclohexanone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl(1,2,2-trimethylpropoxy)silane (Entry 23): %Conversion (%Yield): >99% (79%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 1H NMR (400 MHz, 298K, CDCl$_3$): δ (ppm) 3.45 (q, $J = 6.3$ Hz, 1H), 1.02 (d, $J = 6.3$ Hz, 3H), 0.93 (m, 9H), 0.82 (s, 9H), 0.57 (q, $J = 7.9$ Hz, 6H).

Figure S57. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 3 3-dimethyl-2-butanone in dichloromethane with triethylsilane in air. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl((1-phenylbutan-2-yl)oxy)silane (Entry 24, 25): %Conversion (%Yield): >99% (95.4%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. 1H NMR (400 MHz, 298K, C$_6$D$_6$): δ (ppm) 7.15 – 7.07 (m, 3H, Ar-H), 7.06 – 7.01 (m, 1H, Ar-H), 3.75 (p, $J = 6.2$ Hz, 1H, CHOSi), 2.66 (qd, $J = 13.3$ Hz, $J = 6.2$ Hz, 2H, Ar-CH_2R), 1.47 – 1.39 (m, 2H, C(H)CH$_2$CH$_3$), 1.00 – 0.84 (m, 12H, SiCH$_2$CH$_3$ and C(H)CH$_2$CH$_3$), 0.48 (qd, $J = 8.0$ Hz, $J = 2.1$ Hz, 6H, SiCH$_2$CH$_3$). 13C{1H} NMR (101 MHz, 298K, C$_6$D$_6$): δ (ppm) 139.8, 130.0, 128.5, 126.4, 75.1, 44.0, 30.0, 9.7, 7.2, 5.4. GCMS: 235.2 ([M-CH$_2$CH$_3$]$^+$, calc’d. 235.15).
Figure S58. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 1-phenylbutan-2-one in dichloromethane with 1.1 equivalents of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S59. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 1-phenylbutan-2-one in dichloromethane with 2 equivalents of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S60. 1H NMR (400 MHz, 298K, CDCl$_3$) for triethyl((1-phenylbutan-2-yl)oxy)silane.

Figure S61. 13C{1H} NMR (101 MHz, 298K, C$_6$D$_6$) of triethyl((1-phenylbutan-2-yl)oxy)silane.
Triethyl(1-methyl-3-phenyl-propoxy)silane (Entry 26): %Conversion (%Yield): >99% (96.8%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.16 1H NMR (400 MHz, 298K, CDCl$_3$): δ (ppm) 7.26 - 7.19 (m, 2H), 7.15 – 7.09 (m, 3H), 3.87 – 3.78 (m, 1H), 2.71 – 2.52 (m, 2H), 1.74 – 1.61 (m, 2H), 1.15 (d, $J = 6.0$Hz, 3H), 0.95 – 0.89 (m, 9H), 0.58 (q, $J = 7.9$ Hz, 6H).

Figure S62. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-phenylbutan-2-one in dichloromethane with 1 equivalent of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl(heptan-4-yloxy)silane (Entry 27): %Conversion (%Yield): >99% (99%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.17 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 3.65 – 3.62 (m, 1H), 1.44 – 1.26 (m, 8H), 0.99 – 0.86 (m, 15H), 0.60 – 0.50 (m, 6H).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{S63.png}
\caption{1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-heptanone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.}
\end{figure}
Triethyl(2-adamantyloxy)silane (Entry 28): %Conversion (%Yield): >99 % (99%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. 1H NMR (400 MHz, 298K, CDCl$_3$): 3.81 (t, $J = 3.3$ Hz, 1H, C(H)OSi), 2.16 (d, $J = 12.6$ Hz, 2H, CHC(H)OSiEt$_3$), 1.86 – 1.63 (m, 10H), 1.43 (d, $J = 12.2$ Hz, 2H, CH$_2$(CH)$_2$), 0.94 (t, $J = 7.9$Hz, 9H), 0.57 (q, $J = 7.9$ Hz, 6H). 13C {1H} NMR (101 MHz, 298K, CDCl$_3$): 74.6, 37.7, 36.5, 35.3, 35.2, 27.6, 27.1, 6.8, 4.9. HRMS (DART-ESI+ Ionization, m/z): m/z calc’d for C$_{16}$H$_{31}$OSi ([M+H]$^+$): 267.21442, Found 267.21282.

![Figure S64](image-url)

Figure S64. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 2-adamantanone in dichloromethane with 1 equivalent of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S65. 1H NMR (400 MHz, 298K, CDCl$_3$) for triethyl(2-adamantyloxy)silane.

Figure S66. 13C{$_1^1$H} NMR (101 MHz, 298K, CDCl$_3$) of triethyl(2-adamantyloxy)silane.
5.3. Catalytic Reductive Deoxygenation of Ketones

General Reaction Scheme:

\[
\begin{align*}
R_1R_2O + 2.1 & \text{ Et}_3\text{SiH} \quad \text{CH}_2\text{Cl}_2 \\
\xrightarrow{5 \text{ mol } \% 1} & \quad R_1R_2 + \text{SiEt}_3O\text{SiEt}_3
\end{align*}
\]

Diphenylmethane (Entries 29-31): %Conversion (%Yield): >99 % (93.6%) as determined by \(^1\text{H} \text{NMR spectroscopy using an external standard of mesitylene in CDCl}_3. Characterization corresponds with reported literature values.\(^{18}\) \(^1\text{H} \text{NMR (400 MHz, 298K, CH}_2\text{Cl}_2): \delta \text{ (ppm) } 7.13-7.29 \text{ (m, 10H), } 3.99 \text{ (s, 2H). GCMS: } 167.2 \text{ ([M] }^+, \text{ calc’d. } 168.09).}

Figure S67. \(^1\text{H} \text{NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of benzophenone in dichloromethane with 2.1 equivalents of triethylsilane. The NMR spectra are referenced to the CH}_2\text{Cl}_2 \text{ resonance at 5.30 ppm.}
Figure S68. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of benzophenone in dichloromethane with 1 equivalent of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S69. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of benzophenone in dichloromethane with 2 equivalents of triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm. The reaction was setup under ambient air. % Conversion (% yield) = 66% (66%).
4,4’-dichlorodiphenylmethane (Entry 32): %Conversion (%Yield): >99 % (89.7%) as determined by \(^1\)H NMR spectroscopy using an external standard of mesitylene in CDCl\(_3\). Characterization corresponds with reported literature values.\(^{19}\) \(^1\)H NMR (400 MHz, 298K, CH\(_2\)Cl\(_2\)): \(\delta\) (ppm) 7.03-7.26 (m, 8H), 3.91 (s, 2H). GCMS: 236.1 ([M]+, calc’d. 236.02).

![Figure S70. \(^1\)H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4,4’-dichlorobenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH\(_2\)Cl\(_2\) resonance at 5.30 ppm.](image-url)
2-Chlorodiphenylmethane (Entry 33): %Conversion (%Yield): >99 % (98.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.37-7.32 (m, 1H), 7.27-7.21 (m, 2H), 7.20-7.10 (m, 6H), 4.09 (s, 2H). GCMS: 202.1 ([M]$^+$, calc’d. 202.05).

Figure S71. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 2-chlorobenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
4-Bromodiphenylmethane (Entry 34): %Conversion (%Yield): 89.6% (89.2%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.18 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.30 (d, 8.0Hz, 2H), 7.25 (d, 7.4Hz, 2H), 7.20 - 7.17 (m, 1H), 7.16 (d, 7.4Hz, 2H), 7.06 (d, 8.0Hz, 2H), 3.91 (s, 2H). GCMS: 246.1 ([M]$^+$, calc’d. 246.00).

![NMR Spectra](image.png)

Figure S72. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4-bromoobenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.

4,4'-dimethyldiphenylmethane (Entry 35): %Conversion (%Yield): >99% (96.5%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.19 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.12 – 6.99 (m, 8H), 3.87 (s, 2H), 2.25 (s, 6H). GCMS: 196.2 ([M]$^+$, calc’d. 196.13).
Figure S73. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4,4’-dimethylbenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm. Methyl peaks in the product overlap with the mesitylene peaks in the external standard.

4-tert-butyldiphenylmethane (Entry 36): %Conversion (%Yield): >99% (98.1%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.31 - 7.23 (m, 4H), 7.21-7.15 (m, 3H), 7.11 (d, $J = 8.0$Hz, 2H), 3.91 (s, 2H), 1.27 (s, 9H). GCMS: 224.2 ([M]$^+$, calc’d. 224.16).
Figure S74. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4-tert-butylbenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
2-methyldiphenylmethane (Entry 37): % Conversion (%Yield): >99% (97.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.22 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.27-7.19 (m, 2H), 7.16-7.03 (m, 7H), 3.95 (s, 2H), 2.21 (s, 3H). GCMS: 182.2 ([M]$^+$, calc’d. 182.11).

Figure S75. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 2-methylbenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
4,4′-di-tert-butyl diphenylmethane (Entry 38):% Conversion (% Yield): 15.6% (15.5%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.23 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.28 (d, $J = 8.2$Hz, 4H), 7.10 (d, $J = 8.2$Hz, 4H), 3.86 (s, 2H), 1.26 (s, 18H). GCMS: 280.3 ([M]$^+$, calc’d. 280.22).

Figure S76. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4,4′-di(tert-butyl)benzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
4,4’-bis(dimethylamino)benzophenone (Entry 39):

%Conversion: <1% over 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$.

Figure S77. 1H NMR (298K, 400 MHz) spectra for the attempted catalytic deoxygenation of tris(2’,4’,6’-triisopropyl)acetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Tris(2’,4’,6’-triisopropyl)acetophenone (Entry 40): %Conversion: <1% over 24 hours as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$.

Figure S78. 1H NMR (298K, 400 MHz) spectra for the attempted catalytic deoxygenation of tris(2’,4’,6’-triisopropyl)acetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Decafluorobenzophenone (Entry 41): %Conversion: <1% over 24 hours as determined by 1H NMR and 19F NMR spectroscopy using an external standard of mesitylene and hexafluorobenzene in CDCl$_3$.

Figure S79. 1H NMR (298K, 400 MHz) spectra for the attempted catalytic deoxygenation of decafluorobenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
After 30 minutes

After 24 hours

Figure S80. 9F NMR (298K, 377 MHz) spectra for the attempted catalytic deoxygenation of decafluorobenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the hexafluorobenzene external standard signal at -163.0 ppm
Dibenzosuberane (Entry 42): %Conversion (%Yield): >99% (99.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.24 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.17-7.13 (m, 2H), 7.11-7.03 (m, 6H), 4.09 (s, 2H), 3.14 (s, 4H). GCMS: 194.2 ([M]$^+$, calc'd. 194.11).

Figure S81. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of dibenzosuberone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
(Cyclohexylmethyl)benzene (Entry 43): %Conversion (%Yield): >99% (97.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.18 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.22 (t, $J = 7.4$Hz, 2H), 7.16-7.09 (m, 3H), 2.45 (d, $J = 7.0$Hz, 2H), 1.70 – 1.57 (m, 5H), 1.53-1.43 (m, 1H), 1.27 -1.11 (m, 3H), 1.01-0.86 (1H overlapping with hexaethyldisiloxane signal). GCMS: 174.2 ([M]$^+$, calc’d. 174.11).

Figure S82. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of phenyl(cyclohexyl)ketone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Isobutylbenzene (Entry 44): %Conversion (%Yield): >99% (97.6%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): 7.28-7.20 (m, 2H), 7.17-7.10 (m, 3H), 2.47 (d, $J = 6.7$ Hz, 2H), δ (ppm) 1.89-1.79 (m, 1H), 0.90 (d, 6H, overlapping with hexaethyldisiloxane signal).

Figure S83. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of phenyl(isopropyl)ketone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
4-methoxydiphenylmethane (Entry 45): %Conversion (%Yield): 59.7% (58.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.19 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.28-7.22 (m, 2H), 7.19-7.13 (m, 3H), 7.09 (d, 8.4 Hz, 2H), 6.84-6.77 (m, 2H), 3.90 (s, 2H), 3.72 (s, 3H).

![NMR Spectra](image)

Figure S84. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4-methoxybenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Neopentylbenzene (Entry 46): %Conversion (%Yield): >99% (91.0%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.26 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.29-7.19 (m, 2H), 7.16-7.06 (m, 3H), 2.46 (s, 2H), 0.95 (s, 9H, overlaps with hexaethyldisiloxane signal).

Figure S85. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 2,2,2-trimethylacetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
1,2,3,4-tetrahydronaphthalene (Entry 47): %Conversion (%Yield): >99% (98.5%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.27 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.03-7.00 (m, 4H), 2.76 – 2.71 (m, 4H), 1.79 – 1.73 (m, 4H). GCMS: 132.1 ([M]$^+$, calc’d. 132.2).

Figure S86. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 1-tetralone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
4-(trifluoromethyl)diphenylmethane (Entry 48): %Conversion (%Yield): >99% (98%) as determined by 19F NMR spectroscopy using an external standard of hexafluorobenzene and mesitylene in CDCl$_3$. Some hydrodefluorination (2%) is observed by the formation of fluorotriethylsilane signals at -177 ppm in the 19F NMR spectrum. Characterization corresponds with reported literature values.28 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.52 (d, $J = 8.0$ Hz, 2H), 7.31 (d, $J = 8.0$ Hz, 2H), 7.27 (d, $J = 7.6$ Hz, 1H), 7.22 – 7.15 (m, 4 H), 4.02 (s, 2H). 19F NMR (377 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) -64.5 (s, 3F). GCMS: 236.2 ([M]$^+$, calc’d. 236.08).

Figure S87. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 4-trifluoromethylbenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S88. 19F NMR (298K, 377 MHz) spectra for the catalytic deoxygenation of 4-trifluoromethylbenzophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the hexafluorobenzene external standard signal at -163.0 ppm.
Ethylbenzene (Entry 49): %Conversion (%Yield): >99% (96.4%) as determined by \(^1\)H NMR spectroscopy using an external standard of mesitylene in CDCl\(_3\). Characterization corresponds with reported literature values.\(^2\) \(^1\)H NMR (400 MHz, 298K, CH\(_2\)Cl\(_2\)): \(\delta\) (ppm) 7.24 (t, 7.8 Hz, 2H), 7.20 – 7.11 (m, 3H), 2.62 (q, 7.6 Hz, 2H), 1.21 (t, 7.6 Hz, 3H).

Figure S89. \(^1\)H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of acetophenone in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH\(_2\)Cl\(_2\) resonance at 5.30 ppm.
Adamantane (Entry 50): %Conversion (%Yield): >99% (94%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 1H NMR (400 MHz, 298K, α-CH$_2$Cl$_2$): δ (ppm) 1.81 - 1.74 (br s, 4H), 1.70 – 1.60 (br s, 12H).

Figure S90. 1H NMR (298K, 400 MHz) spectra for the catalytic deoxygenation of 2-adamantanone in dichloromethane with triethylsilane. The middle spectrum shows the formation of the silyl ether at room temperature, whereas the bottom spectrum shows the formation of adamantane. The NMR spectra are referenced to the α-CH$_2$Cl$_2$ resonance at 7.12 ppm.
5.4. Catalytic Hydrosilylation of Olefins

Triethyl(isobutyl)silane (Entry 51): %Conversion: >99% after 30 minutes as determined by 1H NMR spectroscopy, where conversion was monitored by the consumption of isobutene signals. Characterization corresponds with reported literature values.31 1H NMR (500 MHz, 298K, CDCl$_3$): δ (ppm) 1.77 (nonet, $J = 6.6$ Hz, 1H, -CH), 0.94 (d, $J = 6.5$ Hz, 6H, -CH$_3$), 0.93 (t, $J = 7.8$ Hz, 9H, -Si(CH$_2$CH$_3$)$_3$), 0.53 (q, $J = 7.8$Hz, 6H, -Si(CH$_2$CH$_3$)$_3$), 0.52 (d, $J = 6.6$ Hz, 2H, -CHCH$_2$Si). 13C{1H} NMR (126 MHz, 298K, CDCl$_3$): δ (ppm) 26.9, 25.1, 22.3, 7.9, 4.5. GCMS: 143.2 ([M-C$_2$H$_5$]$^+$, calc’d. 143.13).

Figure S91. 1H NMR (298K, 400 MHz) spectrum for the catalytic hydrosilylation of isobutene in dichloromethane with triethylsilane after 30 minutes. The NMR spectrum is referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S92. 1H NMR (500 MHz, 298K, CDCl$_3$) spectrum for triethyl(isobutyl)silane.
Figure S93. 13C-¹H NMR (126 MHz, 298K, CDCl₃) spectrum for triethyl(isobutyl)silane.
Triethyl(3-(triphenylsilyl)propyl)silane (Entry 52): %Conversion (%Yield): >99% (96%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Product was not isolated but was detected by GCMS. GCMS: 415.2 ([M-H]$^+$, calc’d. 415.23).

![NMR Spectra](image)

Figure S94. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of allyltriphophenylsilane in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S95. 1H NMR (298K, 500 MHz) spectra for the reaction mixture of the catalytic hydrosilylation of allyltriphenylsilane in dichloromethane with triethylsilane after the catalysis. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.

Figure S96. 13C{1H} NMR (298K, 126 MHz) spectra for the reaction mixture of the catalytic hydrosilylation of allyltriphenylsilane in dichloromethane with triethylsilane after the catalysis. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 54 ppm.
Triethyl(2-methyl-3-(trimethylsilyl)propyl)silane (Entry 53): %Conversion (%Yield): >99% (84%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Product was not isolated, but was detected by GCMS. GCMS: 243.2 ([M-H]$^+$, calc’d. 243.20).

![NMR spectrums](image)

Figure S97. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of methallyltrimethylsilane in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S98. 1H NMR (298K, 500 MHz) spectra for the reaction mixture of the catalytic hydrosilylation of allyltriphenylsilane in dichloromethane with triethylsilane after the catalysis. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.

Figure S99. 13C(1H) NMR (298K, 126 MHz) spectra for the reaction mixture of the catalytic hydrosilylation of methallytrimethylstyrene in dichloromethane with triethylsilane after the catalysis. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 54 ppm.
Triethyl(cyclohexyl)silane (Entry 54): %Conversion (%Yield): >99% (98.5%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values. 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 1.73 – 1.62 (m, 5H), 1.21 – 1.10 (m, 5H), 0.93 – 0.87 (m, 9H), 0.72 (t, $J = 12.0$ Hz, 1H), 0.52 – 0.46 (m, 6H).

Figure S100. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of cyclohexene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl(2-propylphenyl)silane (Entry 55): Product was isolated as a clear liquid with an isolated yield of 96% (225 mg, 1 mmol of olefin). Characterization corresponds with reported literature values.\(^{31}\) \(^1\)H NMR (400 MHz, 298K, CDCl\(_3\)): \(\delta\) (ppm) 7.29 – 7.21 (m, 4H), 7.19 – 7.15 (m, 1H), 2.88 (sextet, \(J = 7.1\) Hz, 1H), 1.28 (d, \(J = 7.1\) Hz, 3H), 0.98 (d, \(J = 7.4\) Hz, 1H), 0.93 (d, \(J = 7.4\) Hz, 1H), 0.88 (t, \(J = 7.9\) Hz, 9H), 0.48 – 0.36 (m, 6H). \(^{13}\)C\{\(^1\)H\} NMR (101 MHz, 298K, CDCl\(_3\)): \(\delta\) (ppm) 150.3, 128.4, 126.7, 125.9, 36.3,

![Figure S101. \(^1\)H NMR spectrum (CDCl\(_3\), 400 MHz, 298K) for triethyl(2-propylphenyl)silane.](image-url)
Figure S102. $^{13}\text{C}^{1}\text{H}$ NMR spectrum (CDCl$_3$, 101 MHz, 298K) for triethyl(2-propylphenyl)silane.
Triethyl(2-(4-tolyl)propyl)silane (Entry 56): %Conversion (%Yield): >99% (98%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.3 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.11-7.04 (m, 4H), 2.83 (sextet, $J = 7.2$ Hz, 1H), 2.29 (s, 3H), 1.23 (d, $J = 7.0$ Hz, 3H), 0.98 (m, 1H), 0.90 (m, 1H), 0.87 (t, $J = 8.0$ Hz, 9H), 0.41 (m, 6H). GCMS: 219.16 ([M-CH$_2$CH$_3$]$^+$, calc’d. 219.2).

Figure S103. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4,α-dimethylstyrene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl(2-(4-chlorophenyl)propyl)silane (Entry 57): %Conversion (%Yield): >99% (95%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. Characterization corresponds with reported literature values.3 1H NMR (400 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.21 (d, $J = 8.5$ Hz, 2H), 7.16 (d, $J = 8.5$ Hz, 2H), 2.85 (sextet, $J = 7.0$ Hz, 1H), 1.21 (d, $J = 7.0$ Hz, 3H), 0.99 – 0.86 (m, 2H), 0.85 (t, $J = 7.9$Hz, 9H), 0.42 – 0.38 (m, 6H).

Figure S104. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-Chloro-α-methylstyrene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Triethyl(2-(4-fluorophenyl)propyl)silane (Entry 58): %Conversion (%Yield): 79% (73%) as determined by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$. 1H NMR (500 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 7.17 (dd, 3J$_{C-H}$ = 8.8 Hz, 3J$_{C-F}$ = 5.6 Hz, 2H, Ar-CH), 6.93 (t, J = 8.8 Hz, 2H, Ar-CH), 2.86 (sextet, J = 7.0Hz, 1H, CHCH$_3$), 1.23 (d, J = 7.0 Hz, 3H, -CH$_3$), 0.96 – 0.90 (m, 2H, -CHCH$_2$), 0.85 (t, J = 8.0 Hz, 9H, -CH$_2$CH$_3$), 0.45 – 0.35 (m, 6H, -CH$_2$CH$_3$). 13C{1H} (126 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) 161.3 (d, 1J$_{C-F}$ = 242.0 Hz), 146.2 (d, 4J$_{C-F}$ = 3.1 Hz), 128.2 (d, 3J$_{C-F}$ = 7.7 Hz), 114.9 (d, 2J$_{C-F}$ = 21.0 Hz), 35.7, 26.8, 21.8, 7.3, 3.8. 19F NMR (376 MHz, 298K, CH$_2$Cl$_2$): δ (ppm) -119.9 (m). GCMS: 223.2 ([M]$^+$, calc’d. 223.13).

![Before Catalyst Addition](image1.png)

![After 96 hours at 50C](image2.png)

Figure S105. 1H NMR (298K, 400 MHz) spectra for the catalytic hydrosilylation of 4-fluoro-α-methylstyrene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Figure S106. 19F NMR (298K, 376 MHz) spectra for the catalytic hydrosilylation of 4-fluoro-α-methylstyrene in dichloromethane with triethylsilane. The NMR spectra are referenced to the hexafluorobenzene signal at -163 ppm.
Figure S107. 1H NMR (298K, 500 MHz) spectrum for triethyl(2-(4-fluorophenyl)propyl)silane after the reaction. The NMR spectrum is referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.

Figure S108. 13C(1H) NMR (298K, 126 MHz) spectrum for triethyl(2-(4-fluorophenyl)propyl)silane. The NMR spectrum is referenced to the CH$_2$Cl$_2$ resonance at 54.0 ppm.
1-methylcyclopentene: <1% conversion as monitored by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$.

Figure S109. 1H NMR (CH$_2$Cl$_2$, 298K, 400 MHz) of the attempted hydrosilylation of 1-methyleclopentene with triethylsilane.
Triphenylethylene: <1% conversion as monitored by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$.

Figure S110. 1H NMR (CH$_2$Cl$_2$, 298K, 400 MHz) of the attempted hydrosilylation of triphenylethylene with triethylsilane.
Trans-α-methylstilbene: <1% conversion as monitored by 1H NMR spectroscopy using an external standard of mesitylene in CDCl$_3$.

Figure S11. 1H NMR (CH$_2$Cl$_2$, 298K, 400 MHz) of the attempted hydrosilylation of with trans-α-methylstilbene.
5.5. Catalytic Reaction with 1 Generated in-situ

Procedure: A mixture of 4-methylbenzaldehyde (12 μL, 0.10 mmol), Et₃SiH (17.6 μL, 0.12 mmol) in dry CH₂Cl₂ was added to a stirring solution of terpyridine (2.3 mg, 10 mol%), PhPCl₂ (1.4 μL, 10 mol%) and Na[B(C₆F₅)₄] (14 mg, 20 mol%). The yellow solution was transferred to an NMR tube and the conversion was monitored by ¹H NMR spectroscopy.

![NMR spectra](image)

Figure S112. ¹H NMR (CH₂Cl₂, 298K, 400 MHz) for the catalytic hydrosilylation of 4-methylbenzaldehyde with 1 generated *in situ.*
5.6. Attempted Catalytic Reactions/Inhibition involving Alkynes

Figure S113. 1H NMR (298K, 400 MHz) spectra for the attempted catalytic hydrosilylation of diphenylacetylene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Procedure for the attempted hydrosilylation of α-methylstyrene in the presence of phenylacetylene.

α-methylstyrene (11.2 mg, 0.10 mmol) was added to a solution of 1 (8.4 mg, 10 mol%), phenylacetylene (10.2 mg, 0.10 mmol) and triethylsilane (17.6 μL, 0.11 mmol) in dichloromethane (0.7 mL). The solution was transferred to an NMR tube containing an external standard of mesitylene and hexafluorobenzene in CDCl₃. An NMR spectrum was initially taken of the mixture, and the reaction was monitored at room temperature and at 50°C by ¹H NMR spectroscopy.

Figure S114. ¹H NMR (298K, 400 MHz) spectra for the competitive catalytic hydrosilylation of α-methylstyrene and phenylacetylene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH₂Cl₂ resonance at 5.30 ppm.
Figure S115. 1H NMR (298K, CH$_2$Cl$_2$ 400 MHz) spectra for the attempted catalytic hydrosilylation of 4-trifluoromethylphenylacetylene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Before Catalyst Addition

After 16 hours at 50°C

Figure S116. 19F NMR (298K, CH$_2$Cl$_2$ 376 MHz) spectra for the attempted catalytic hydrosilylation of 4-trifluoromethylphenylacetylene in dichloromethane with triethylsilane. The NMR spectra are referenced to the CH$_2$Cl$_2$ resonance at 5.30 ppm.
Procedure for attempted reactions of 1 with alkynes: 1 (24 mg, 0.014 mmol) in dichloromethane (0.7 mL) was added to diphenylacetylene (5.0 mg, 0.028 mmol) or phenylacetylene (2.9 mg, 0.028 mmol) and the resulting solution was monitored by 31P NMR spectroscopy.

Figure S117. 31P {1H} NMR (CH$_2$Cl$_2$, 298K, 400 MHz) spectrum for the attempted reaction between 1 and diphenylacetylene.
Figure S118. $^{31}\text{P}^{1}\text{H}$ NMR (CH$_2$Cl$_2$, 298K, 400 MHz) spectrum for the attempted reaction between 1 and phenylacetylene.
Figure S119. $^{31}\text{P}\{^1\text{H}\}$ NMR (CH$_2$Cl$_2$, 298K, 400 MHz) spectra for the interactions between diphenylacetylene and 1 with an external standard of PPh$_3$.
Figure S120. 31P{1H} NMR (CH$_2$Cl$_2$, 298K, 400 MHz) spectra for the interactions between acetophenone and 1 with an external standard of PPh$_3$.
6. Mechanistic Considerations

6.1. Monitoring 1 in situ by 31P NMR Spectroscopy

![Chemical Reaction Diagram]

Procedure:

A mixture of dibenzosuberone (0.1 mmol) and triethyl silane (0.21 mmol) in dichloromethane (0.7 mL) was added to an NMR tube containing 1 (x mol %) and a capillary containing hexafluorobenzene and mesitylene in CDCl$_3$. The product conversion and catalyst identity was monitored overtime by 1H NMR spectroscopy and 31P{1H} NMR spectroscopy, respectively.

![NMR Spectra](image)

Figure S121. 1H NMR spectra for the reductive deoxygenation of dibenzosuberone using 6 mol% of 1.
After 20 minutes
After 60 minutes
After 90 minutes
After 120 minutes
After 150 minutes
After 195 minutes
After 225 minutes
After 240 minutes

Figure S122. $^{31}\text{P} \{^1\text{H}\}$ NMR (CH$_2$Cl$_2$, 298 K, 126 MHz) spectra for the reductive deoxygenation of dibenzosuberone using 6 mol% of 1.

$^1\text{H} + 2 \text{Na[HBE}_3\text{]} \xrightarrow{\text{CH}_2\text{Cl}_2, -40^\circ\text{C to RT}} \text{PhPH}_2 + \text{Terpyridine}$

Procedure: To a stirring solution of ^1H (20 mg, 0.0089 mmol) in CH$_2$Cl$_2$ (1 mL) at -40$^\circ$C was added Na[HBE$_3$] (1.0 M in toluene, 8.9 μL, 0.0089 mmol) slowly. The resulting faint yellow solution was monitored by ^{31}P NMR spectroscopy, and PhPH$_2$ was identified as the major product. PhPH$_2$ δ $^{31}\text{P} = -123$ ppm (t, $^1\text{J}_{\text{P-H}} = 196$ Hz).
Figure S123. 31P {1H} NMR (CH$_2$Cl$_2$, 298 K, 126 MHz) for the reaction of 1 with Na[HBEt$_3$].

Figure S124. 31P NMR (CH$_2$Cl$_2$, 298 K, 126 MHz) for the reaction of 1 with Na[HBEt$_3$].
7. References

15. Tran, B. L.; Pink, M.; Mindiola, D. J., Catalytic Hydrosilylation of the Carbonyl Functionality via a Transient Nickel Hydride Complex. *Organometallics* 2009, 28 (7), 2234-2243.

