Pd-Catalysed selective C\((sp^3) \)-H arylation and acetoxylation of alcohols

Bing-Xin Wang, Yang-Jie Mao, Hong-Yan Hao, Qiu-Zi Wu, Kun Zhou, Shao-Jie Lou * and Dan-Qian Xu *

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China

Table of Contents

I. General 2
II. Preparation of substrates 2
III. Screening of conditions 9
IV. General procedures 12
V. Removal of directing groups 13
VI. Hydrolysis of 4i 14
VII. Competing experiments 14
VIII. Deuterium experiment 16
IX. References 17
X. Characterization data of products 18
XI. NMR Spectra 40
I. General

Unless otherwise stated, all experiments were carried out under air atmosphere. The reagents and solvents
were purchased from commercial suppliers and used without further purification unless noted. 1H NMR
and 13C NMR spectra were obtained on a Bruker AVANCE III 500 instrument in CDCl$_3$ using TMS as an
internal standard, operating at 500 MHz and 126 MHz, respectively. Chemical shifts (δ) are expressed in
ppm and coupling constants J are given in Hz. For CDCl$_3$ solutions the chemical shifts are reported as
parts per million (ppm) to residual protium or carbon of the solvents; CDCl$_3$ δH (7.28 ppm) and CDCl$_3$
δC (77.03 ppm). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t =
triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, m = multiplet. GC experiments were
carried out using Agilent 7890B GC. GC-MS experiments that used dodecane as an internal standard
were performed with a Thermo DSQ II, Trace GC Ultra. High resolution mass spectra (HRMS (ESI-TOF))
were obtained on an Agilent 6545 Q-TOF LCMS spectrometer equipped with an ESI source.

II. Preparation of substrates

The substrates 1 for C(sp3)-H arylation and acetoxylation were prepared following the previous
procedures.$^{1-5}$ Some new substrates are characterized as below:

Characterization data of new substrates:

![Chemical structure of (E)-2-((hexan-2-yloxy)imino)-N-(perfluorophenyl)propanamide](image)

(E)-2-((hexan-2-yloxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil; R$_f$ = 0.51 (petroleum
ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 8.15 (s, 1H), 4.38 (h, J = 6.3 Hz, 1H), 2.10 (s, 3H),
1.78-1.71 (m, 1H), 1.61-1.54 (m, 1H), 1.43-1.35 (m, 4H), 1.38 (d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H)
ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.5, 148.9, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m),
139.0-138.8 (m), 137.0-136.9 (m), 111.9-111.7 (m), 81.9, 35.3, 27.6, 22.7, 19.9, 14.0, 9.7 ppm; HRMS

![Chemical structure of (E)-2-(((4-methylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide](image)

(E)-2-(((4-methylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: White solid; R$_f$ = 0.64
(petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 8.15 (s, 1H), 4.50-4.43 (m, 1H), 2.09
(s, 3H), 1.82-1.74 (m, 1H), 1.73-1.64 (m, 1H), 1.42-1.35 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H), 0.96 (dd, J$_1$
= 8.1 Hz, J$_2$ = 6.6 Hz, 6H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.5, 148.9, 144.2-144.0 (m), 142.2-
142.0 (m), 141.1-140.9 (m), 139.0-138.7 (m), 137.0-136.7 (m), 111.9-111.6 (m), 80.4, 44.7, 24.8, 22.9,
22.6, 20.5, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 375.1102; found: 375.1102.
(E)-2-(((5-chloropentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Yellow solid; R$_f$ = 0.49 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 8.13 (s, 1H), 4.43 (h, J = 6.4 Hz, 1H), 3.60 (t, J = 6.3 Hz, 2H), 2.10 (s, 3H), 1.98-1.92 (m, 1H), 1.91-1.85 (m, 2H), 1.84-1.76 (m, 1H), 1.36 (d, J = 6.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.3, 149.4, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.1-138.9 (m), 137.0-136.7 (m), 80.9, 44.8, 32.8, 28.5, 19.9, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 395.0556; found: 395.0556.

(E)-2-(((1-(4-methoxyphenyl)propan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil; R$_f$ = 0.44 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 7.97 (s, 1H), 7.16-7.11 (m, 2H), 6.87-6.83 (m, 2H), 4.60 (h, J = 6.3 Hz, 1H), 3.78 (s, 3H), 2.99 (dd, J_1 = 14.0 Hz, J_2 = 6.9 Hz, 1H), 2.85 (dd, J_1 = 14.0 Hz, J_2 = 5.8 Hz, 1H), 2.09 (s, 3H), 1.35 (d, J = 6.4 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.4, 158.2, 149.0, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.0-136.7 (m), 130.0 (2C), 130.0, 113.7 (2C), 111.8-111.5 (m), 82.5, 55.1, 41.4, 19.4, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 439.1052; found: 439.1052.

(E)-N-(perfluorophenyl)-2-(((4-phenylbutan-2-yl)oxy)imino)propanamide: White solid; R$_f$ = 0.54 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 8.12 (s, 1H), 7.34-7.30 (m, 2H), 7.24-7.20 (m, 3H), 4.43 (h, J = 6.3 Hz, 1H), 2.82-2.70 (m, 2H), 2.15-2.07 (m, 4H), 1.98-1.90 (m, 1H), 1.39 (d, J = 6.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.4, 149.1, 144.2-144.0 (m), 142.2-142.0 (m), 141.6, 141.0-140.9 (m), 139.0-138.7 (m), 137.0-136.7 (m), 128.4 (2C), 128.4 (2C), 126.0, 111.8-111.6 (m), 81.0, 37.1, 31.7, 20.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 423.1102; found: 423.1108.
(E)-N-(perfluorophenyl)-2-(((4-o-tolyl)butan-2-yl)oxy)imino)propanamide: Yellowish oil; R\textsubscript{f} = 0.58 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.16\) (s, 1H), 7.21-7.13 (m, 4H), 4.49 (h, \(J = 6.3\) Hz, 1H), 2.84-2.77 (m, 1H), 2.76-2.69 (m, 1H), 2.36 (s, 3H), 2.16 (s, 3H), 2.09-2.01 (m, 1H), 1.95-1.87 (m, 1H), 1.43 (d, \(J = 6.3\) Hz, 3H) ppm; 13C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 161.4, 149.2, 144.2-144.0\) (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.8, 139.0-138.7 (m), 137.0-136.7 (m), 135.8, 130.3, 128.8, 126.1, 126.0, 111.8-111.5 (m), 81.2, 36.0, 28.9, 19.9, 19.1, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 437.1259; found: 437.1265.

\[\text{CF}_3\]

(E)-N-(perfluorophenyl)-2-(((4-(4-(trifluoromethyl)phenyl)butan-2-yl)oxy)imino)propanamide: Yellow oil; R\textsubscript{f} = 0.49 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.11\) (s, 1H), 7.56 (d, \(J = 8.1\) Hz, 2H), 7.33 (d, \(J = 8.0\) Hz, 2H), 4.43 (h, \(J = 6.3\) Hz, 1H), 2.89-2.75 (m, 2H), 2.15-2.06 (m, 4H), 2.00-1.91 (m, 1H), 1.39 (d, \(J = 6.3\) Hz, 3H) ppm; 13C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 161.3, 149.4, 145.8, 144.1-144.0\) (m), 142.2-142.0 (m), 141.1-140.9 (m), 139.0-138.8 (m), 137.0-136.7 (m), 128.7 (2C), 128.4 (q, \(J = 32.4\) Hz), 125.3 (q, \(J = 3.5\) Hz, 2C), 124.3 (q, \(J = 272.2\) Hz), 111.8-111.5 (m), 80.7, 36.7, 31.5, 19.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 491.0976; found: 491.0976.

\[\text{CF}_3\]

(E)-2-(((4-(2-fluorophenyl)butan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil; R\textsubscript{f} = 0.57 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta = 8.11\) (s, 1H), 7.20 (q, \(J = 7.2\) Hz, 2H), 7.10-6.99 (m, 2H), 4.42 (h, \(J = 6.3\) Hz, 1H), 2.84-2.72 (m, 2H), 2.10 (s, 3H), 2.09-2.03 (m, 1H), 1.98-1.89 (m, 1H), 1.39 (d, \(J = 6.3\) Hz, 3H) ppm; 13C NMR (126 MHz, CDCl\textsubscript{3}): \(\delta = 161.4, 161.2\) (d, \(J = 244.5\) Hz), 149.2, 144.2-144.1 (m), 142.2-142.0 (m), 141.1-140.9 (m), 138.9-138.7 (m), 137.0-136.8 (m), 130.6 (d, \(J = 5.2\) Hz), 128.4 (d, \(J = 15.7\) Hz), 127.8 (d, \(J = 8.3\) Hz), 124.0 (d, \(J = 3.5\) Hz), 115.3 (d, \(J = 22.1\) Hz), 111.7-111.6 (m), 81.0 35.7, 25.1 (d, \(J = 2.6\) Hz), 19.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 441.1008; found: 441.1016.
(E)-2-(((4-(3-fluorophenyl)butan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;
R_f = 0.49 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl₃): δ = 8.10 (s, 1H), 7.28-7.24 (m, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.91 (t, J = 8.6 Hz, 2H), 4.45-4.38 (m, 1H), 2.81-2.69 (m, 2H), 2.11 (s, 3H), 2.10-2.05 (m, 1H), 1.96-1.88 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H) ppm;
13C NMR (126 MHz, CDCl₃): δ = 163.0 (d, J = 245.5 Hz), 161.3, 149.3, 144.2 (d, J = 6.9 Hz), 144.1-144.0 (m), 142.2-142.1 (m), 141.1-140.9 (m), 139.0-138.9 (m), 137.0-136.8 (m), 129.9 (d, J = 8.5 Hz), 124.0 (d, J = 2.6 Hz), 115.2 (d, J = 20.9 Hz), 112.9 (d, J = 20.9 Hz), 111.8-111.6 (m), 80.8, 36.8, 31.4, 20.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 441.1008; found: 441.1010.

(F)-2-(((4-(4-fluorophenyl)butan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;
R_f = 0.49 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl₃): δ = 8.10 (s, 1H), 7.18-7.14 (m, 2H), 7.01-6.96 (m, 2H), 4.44-4.37 (m, 1H), 2.78-2.66 (m, 2H), 2.12 (s, 3H), 2.09-2.03 (m, 1H), 1.93-1.86 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H) ppm;
13C NMR (126 MHz, CDCl₃): δ = 161.3, 161.3 (d, J = 243.7 Hz), 149.3, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.2 (d, J = 3.1 Hz), 137.0-136.8 (m), 129.7 (d, J = 7.8 Hz, 2C), 115.2 (d, J = 21.2 Hz, 2C), 111.7-111.5 (m), 80.8, 37.2, 30.8, 19.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 441.1008; found: 441.1011.

(E)-2-(((4-methylphenethoxy)imino)-N-(perfluorophenyl)propanamide: Yellow oil;
R_f = 0.56 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl₃): δ = 8.00 (s, 1H), 7.15 (s, 4H), 4.49 (t, J = 6.9 Hz, 2H), 3.04 (t, J = 6.9 Hz, 2H), 2.33 (s, 3H), 2.10 (s, 3H) ppm;
13C NMR (126 MHz, CDCl₃): δ = 161.2, 149.5, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.2 (d, J = 3.1 Hz), 137.0-136.8 (m), 129.7 (d, J = 7.8 Hz, 2C), 115.2 (d, J = 21.2 Hz, 2C), 111.7-111.5 (m), 76.4, 35.4, 21.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 409.0946; found: 409.0948.

(E)-2-(((4-methoxyphenethoxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil;
R_f = 0.33 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl₃): δ = 8.01 (s, 1H), 7.18-7.15 (m, 2H), 6.88-6.85 (m, 2H), 4.47 (t, J = 6.8 Hz, 2H), 3.79 (s, 3H), 3.01 (t, J = 6.8 Hz, 2H), 2.10 (s, 3H) ppm;
13C NMR (126 MHz, CDCl₃): δ = 161.2, 158.3, 149.6, 144.2-144.1 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-
(E)-2-((2-(naphthalen-1-yl)ethoxy)imino)-N-(perfluorophenyl)propanamide: White solid; R_f = 0.47 (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃): δ = 8.09 (d, <i>J</i> = 8.5 Hz, 1H), 7.92-7.85 (m, 2H), 7.58-7.47 (m, 2H), 4.66 (t, <i>J</i> = 7.0 Hz, 2H), 3.55 (t, <i>J</i> = 7.0 Hz, 2H), 2.07 (s, 3H) ppm;
¹³C NMR (126 MHz, CDCl₃): δ = 161.1, 149.7, 144.1-144.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.1-136.8 (m), 133.9, 133.9, 132.0, 128.9, 127.4, 127.1, 126.1, 125.7, 125.5, 123.5, 111.7-111.4 (m), 75.7, 32.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 445.0946; found: 445.0953.

(E)-2-((2-bromophenethoxy)imino)-N-(perfluorophenyl)propanamide: Yellow oil; R_f = 0.50 (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃): δ = 8.00 (s, 1H), 7.58 (d, <i>J</i> = 7.9 Hz, 1H), 7.28-7.26 (m, 2H), 4.53 (t, <i>J</i> = 6.7 Hz, 2H), 3.22 (t, <i>J</i> = 6.7 Hz, 2H), 2.09 (s, 3H) ppm;
¹³C NMR (126 MHz, CDCl₃): δ = 161.1, 149.8, 144.2-144.0 (m), 142.4-142.0 (m), 141.2-141.0 (m), 138.9-138.8 (m), 137.31, 137.0-136.8 (m), 132.9, 131.2, 128.3, 127.5, 124.6, 111.8-111.5 (m), 74.6, 36.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 472.9895; found: 472.9895.

(E)-2-((2-iodophenethoxy)imino)-N-(perfluorophenyl)propanamide: Yellow oil; R_f = 0.47 (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃): δ = 8.02 (s, 1H), 7.86 (dd, <i>J</i> = 7.9 Hz, <i>J</i> = 1.1 Hz, 1H), 7.31 (td, <i>J</i> = 7.4 Hz, <i>J</i> = 1.1 Hz, 1H), 7.26 (dd, <i>J</i> = 7.6 Hz, <i>J</i> = 1.7 Hz, 1H), 6.94 (td, <i>J</i> = 7.7 Hz, <i>J</i> = 1.8 Hz, 1H), 4.50 (t, <i>J</i> = 6.8 Hz, 2H), 3.24-3.19 (m, 2H), 2.10 (s, 3H) ppm;
¹³C NMR (126 MHz, CDCl₃): δ = 161.1, 149.8, 144.1-144.0 (m), 142.1-142.0 (m), 141.1-140.9 (m), 140.6, 139.7, 139.0-138.9 (m), 136.9-136.8 (m), 130.3, 128.5, 128.4, 111.7-111.3 (m), 100.7, 74.8, 40.5, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 520.9756; found: 520.9760.
(E)-N-(perfluorophenyl)-2-((4-phenylbutoxy)imino)propanamide: White solid; $R_f = 0.53$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.17$ (s, 1H), 7.36-7.29 (m, 2H), 7.26-7.20 (m, 3H), 4.32 (t, $J = 6.2$ Hz, 2H), 2.73 (t, $J = 1.4$ Hz, 2H), 2.13 (s, 3H), 1.85-1.77 (m, 4H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 161.2$, 149.3, 144.1-144.0 (m), 142.1-142.0 (m), 142.0, 141.1-140.9 (m), 139.0-138.7 (m), 136.9-136.7 (m), 128.3, 128.3, 125.9, 111.7-111.5 (m), 75.7, 35.5, 28.5, 27.5, 9.6 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 423.1102; found: 423.1102.

(E)-2-((pentyloxy)imino)-N-(perfluorophenyl)propanamide: Colourless oil; $R_f = 0.64$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.14$ (s, 1H), 4.27 (t, $J = 6.7$ Hz, 2H), 2.11 (s, 3H), 1.79-1.72 (m, 2H), 1.42-1.37 (m, 4H), 0.98-0.91 (m, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 161.3$, 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-140.8 (m), 139.0-138.9 (m), 137.0-136.8 (m), 111.8-111.7 (m), 76.1, 28.8, 28.0, 22.5, 14.0, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 361.0946; found: 361.0947.

(E)-2-((2-cyclohexylethoxy)imino)-N-(perfluorophenyl)propanamide: White solid; $R_f = 0.67$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.14$ (s, 1H), 4.31 (t, $J = 6.8$ Hz, 2H), 2.10 (s, 3H), 1.81-1.69 (m, 5H), 1.67-1.59 (m, 3H), 1.32-1.15 (m, 3H), 1.03-0.92 (m, 2H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 161.3$, 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 137.0-136.8 (m), 111.8-111.6 (m), 74.3, 36.4, 34.6, 33.3, 26.5, 26.2, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 401.1259; found: 401.1262.

(E)-2-(((2-isopropyl-5-methylcyclohexyl)oxy)imino)-N-(perfluorophenyl)propanamide: White solid; $R_f = 0.67$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.17$ (s, 1H), 4.67 (s, 1H),
2.15-2.09 (m, 4H), 1.81-1.75 (m, 2H), 1.68-1.60 (m, 2H), 1.44-1.35 (m, 1H), 1.13-1.05 (m, 2H), 0.97-0.89 (m, 7H), 0.90 (d, J = 6.6 Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.5, 149.1, 144.1-144.0\) (m), 142.2-142.0 (m), 141.0-140.8 (m), 139.0-138.8 (m), 137.0-136.7 (m), 111.9-111.6 (m), 81.9, 47.1, 39.5, 34.9, 29.3, 26.3, 25.2, 22.3, 21.1, 20.8, 9.6 ppm; HRMS (ESI-TOF): calcd. [M+Na]\(^+\) 429.1572; found: 429.1578.

(E)-2-((ethoxy-\(d_5\))imino)-N-(perfluorophenyl)propanamide: Yellow oil; \(R_f = 0.67\) (petroleum ether-EtOAc = 5:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.15\) (s, 1H), 2.11 (s, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.3, 149.2, 144.2-144.0\) (m), 142.2-142.0 (m), 141.2-140.9 (m), 139.1-138.7 (m), 137.0-136.7 (m), 111.8-111.5 (m), 71.0-70.3 (m), 13.9-13.0 (m), 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]\(^+\) 324.0790; found: 324.0790.

III. Screening of the conditions
A. \(C(sp^3)\)-H Arylation of masked alcohols
Figure S1. Screening of directing groups

Table S1. Screening of the arylation conditions
Table S2. Screening of the methyl C(sp³)-H acetoxylation conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Pd] (10 mol%)</th>
<th>[Ag] (equiv.)</th>
<th>Additive (equiv.)</th>
<th>Solvent (mL)</th>
<th>Yield (%)[^a][^b]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(2.0)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (1.0)</td>
<td>64 (58)[^b]</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(2.0)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.5)</td>
<td>PhCl (0.1)</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>Pd(MeCN)₂Cl₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>Pd(OTFA)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>PdCl₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhF (0.1)</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>TBB (0.1)</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>α-DCB (0.1)</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)₂</td>
<td>Ag₂CO₃ (1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Pd(OAc)₂</td>
<td>AgOAc(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>Pd(OAc)₂</td>
<td>AgNO₃(1.5)</td>
<td>NaHCO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>H₃BO₃(1.0)</td>
<td>PhCl (0.1)</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(1.5)</td>
<td>4-ClPhOH(1.0)</td>
<td>PhCl (0.1)</td>
<td>69</td>
</tr>
<tr>
<td>16</td>
<td>Pd(OAc)₂</td>
<td>Ag₂CO₃(2.0)</td>
<td>-</td>
<td>PhCl (1.0)</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>Pd(OAc)₂</td>
<td>Ag₃PO₄(2.0)</td>
<td>Na₂CO₃(1.0)</td>
<td>PhCl (1.0)</td>
<td>49</td>
</tr>
</tbody>
</table>

[^a]: GC yields.
[^b]: 100 °C. TBB = tert-butylbenzene, α-DCB = ortho dichlorobenzene

B. C(sp³)-H Acetoxylation of masked alcohols

Table S2. Screening of the methyl C(sp³)-H acetoxylation conditions
<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant (equiv.)</th>
<th>AcOH/Ac₂O (v/v)</th>
<th>Time (h)</th>
<th>Temp. (°C)</th>
<th>Yield of 4'/4'' (%)(^{[a]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxone (2.5)</td>
<td>25:2</td>
<td>24</td>
<td>110</td>
<td>60/4</td>
</tr>
<tr>
<td>2</td>
<td>Oxone (2.5)</td>
<td>25:2</td>
<td>12</td>
<td>100</td>
<td>62/1</td>
</tr>
<tr>
<td>3</td>
<td>Oxone (2.5)</td>
<td>25:2</td>
<td>24</td>
<td>100</td>
<td>72/22</td>
</tr>
<tr>
<td>4</td>
<td>Oxone (2.5)</td>
<td>50:1</td>
<td>24</td>
<td>100</td>
<td>69/16</td>
</tr>
<tr>
<td>5</td>
<td>Oxone (2.5)</td>
<td>50:1</td>
<td>24</td>
<td>100</td>
<td>63/4</td>
</tr>
<tr>
<td>6</td>
<td>Oxone (2.5)</td>
<td>50:1</td>
<td>24</td>
<td>110</td>
<td>67/17</td>
</tr>
<tr>
<td>7</td>
<td>Oxone (2.0)</td>
<td>50:1</td>
<td>24</td>
<td>110</td>
<td>40/2</td>
</tr>
<tr>
<td>8</td>
<td>Oxone (3.0)</td>
<td>50:1</td>
<td>24</td>
<td>110</td>
<td>67/8</td>
</tr>
<tr>
<td>9</td>
<td>NaNO₃ (2.5)</td>
<td>50:1</td>
<td>16</td>
<td>110</td>
<td>8/trace</td>
</tr>
<tr>
<td>10</td>
<td>K₂S₂O₈ (2.5)</td>
<td>50:1</td>
<td>16</td>
<td>110</td>
<td>69/15</td>
</tr>
<tr>
<td>11</td>
<td>K₂S₂O₈ (2.0)</td>
<td>50:1</td>
<td>24</td>
<td>110</td>
<td>49/3</td>
</tr>
<tr>
<td>12</td>
<td>K₂S₂O₈ (3.0)</td>
<td>50:1</td>
<td>24</td>
<td>110</td>
<td>51/46</td>
</tr>
<tr>
<td>13</td>
<td>K₂S₂O₈ (2.5)</td>
<td>50:1</td>
<td>24</td>
<td>100</td>
<td>60/39</td>
</tr>
<tr>
<td>14</td>
<td>K₂S₂O₈ (2.5)</td>
<td>50:1</td>
<td>24</td>
<td>90</td>
<td>80/10</td>
</tr>
<tr>
<td>15</td>
<td>K₂S₂O₈ (2.5)</td>
<td>25:2</td>
<td>24</td>
<td>100</td>
<td>77/18</td>
</tr>
<tr>
<td>16</td>
<td>K₂S₂O₈ (2.5)</td>
<td>20:4</td>
<td>24</td>
<td>100</td>
<td>33/2</td>
</tr>
<tr>
<td>17</td>
<td>K₂S₂O₈ (2.5)</td>
<td>25:2</td>
<td>12</td>
<td>110</td>
<td>83/10</td>
</tr>
<tr>
<td>18</td>
<td>K₂S₂O₈ (2.5)</td>
<td>25:2</td>
<td>12</td>
<td>100</td>
<td>72/4</td>
</tr>
<tr>
<td>19</td>
<td>K₂S₂O₈ (2.5)</td>
<td>25:2</td>
<td>6</td>
<td>100</td>
<td>12/0</td>
</tr>
<tr>
<td>20</td>
<td>K₂S₂O₈ (2.5)</td>
<td>50:1</td>
<td>12</td>
<td>100</td>
<td>43/1</td>
</tr>
</tbody>
</table>

\(^{[a]}\)GC yields.

Table S3. Screening of the methylene C(sp³)-H acetoxylation conditions
IV. General procedures

a) Typical procedure for the arylation of alcohols

In a 10 mL test tube equipped with a stir bar, alkyl alcohol derivatives 1 (0.3 mmol), Pd(OAc)$_2$ (6.6 mg, 0.03 mmol), Ag$_3$PO$_4$ (188.4 mg, 0.45 mmol), PhI (244.8 mg, 1.2 mmol), NaHCO$_3$ (25.2 mg, 0.3 mmol) and PhCl (0.3 mL) were added successively. Then the tube was heated at 110 °C for 24 h under stirring. Upon completion, the resulting mixture was allowed to cool to room temperature and diluted with EtOAc. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 50:1) to give the corresponding products 3a-3q.

b) Typical procedure for the arylation with diverse aromatic iodides

In a 10 mL test tube equipped with a stir bar, (E)-N-methyl-2-((pentan-2-yloxy)imino)-N-(perfluorophenyl)propanamide (101.4 mg, 0.3 mmol), Pd(OAc)$_2$ (6.6 mg, 0.03 mmol), Ag$_3$PO$_4$ (188.4 mg, 0.45 mmol), ArI (1.2 mmol), NaHCO$_3$ (25.2 mg, 0.3 mmol) and PhCl (0.3 mL) were added successively. Then the tube was sealed and stirred at the indicated temperature for 24 h. Upon completion, the resulting mixture was cooled to room temperature, diluted with EtOAc and concentrated under reduced pressure. Then the residue was purified by silica gel chromatography (petroleum ether/EtOAc = 50:1-10:1) to afford the desired products 3r-3ai.

c) Typical procedure for the acetoxylation of methyl C(sp3)-H bond

In a 10 mL test tube equipped with a stir bar, alkyl alcohol derivatives 1 (0.3 mmol), Pd(OAc)$_2$ (6.6 mg, 0.03 mmol), AcOH (40 mL), Ac$_2$O (10 mL), Ag$_3$PO$_4$ (188.4 mg, 0.45 mmol), PhI (244.8 mg, 1.2 mmol), NaHCO$_3$ (25.2 mg, 0.3 mmol) and PhCl (0.3 mL) were added successively. Then the tube was heated at 110 °C for 24 h under stirring. Upon completion, the resulting mixture was allowed to cool to room temperature and diluted with EtOAc. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 50:1) to give the corresponding products 3a-3q.
0.03 mmol), \(\text{K}_2\text{S}_2\text{O}_8 \) (202.8 mg, 0.75 mmol), AcOH/Ac_2O (75:6, v/v, 1.5 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 12-48 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 10:1-5:1) to give the corresponding products 4’, 4b-4g.

d) Typical procedure for the acetoxylation of methylene \(\text{C}(\text{sp}^3)-\text{H} \) bond

In a 10 mL test tube equipped with a stir bar, phenethanol derivatives 1 (0.3 mmol), Pd(OAc)_2 (6.6 mg, 0.03 mmol), \(\text{K}_2\text{S}_2\text{O}_8 \) (243.9 mg, 0.9 mmol), AcOH/Ac_2O (150:3, v/v, 3 mL) were added successively. Then the tube was sealed and stirred at 100-110 °C for 24 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 10:1-5:1) to afford the desired products 4h-4x.

V. Removal of the directing groups

Following the literature procedure\(^3, 5\): A 25 mL Schlenk tube was charged with arylated product 3v (58 mg, 0.12 mmol, 1.0 equiv.), \(\text{Mo(CO)}_6 \) (38 mg, 0.144 mmol, 1.2 equiv.), \(\text{CH}_3\text{CN} \) (2.0 mL), \(\text{H}_2\text{O} \) (5 drops). The tube was sealed with a Teflon-lined screw cap, refrigerated with liquid nitrogen, evacuated the air and filled with nitrogen by the schlenk line for 3 times. Then the tube was heated at 90 °C for 12 h under stirring. Then the tube was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was purified through flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5:1) to give the corresponding product 5 as a white solid (20 mg, 83% yield).

A 25 mL Schlenk tube was charged with acetoxylated product 4m (84 mg, 0.18 mmol, 1.0 equiv.), \(\text{Mo(CO)}_6 \) (57 mg, 0.216 mmol, 1.2 equiv.), \(\text{CH}_3\text{CN} \) (3.0 mL), \(\text{H}_2\text{O} \) (7 drops). The tube was sealed with a Teflon-lined screw cap, refrigerated with liquid nitrogen, evacuated the air and filled with nitrogen by the schlenk line for 3 times. Then the tube was heated at 90 °C for 12 h under stirring. Then the tube was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was purified through flash column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to give the corresponding product 6 as a white solid (25 mg, 72% yield).

VI. Hydrolysis of 4i
In a 10 mL test tube equipped with a stir bar, acetoxylated product 4i (0.06 mmol), K$_2$CO$_3$ (20.7 mg, 0.15 mmol), MeOH (1 mL) were added successively. Then the solution was allowed to stir at room temperature. After 24 h, the resulting solution was diluted with MeOH. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 5:1) to give the corresponding products 7 as a colorless oil (18 mg, 75% yield).

VII. Competing experiments

Intermolecular competing experiment:

In a 10 mL test tube equipped with a stir bar, 2-(4-methoxyphenyl)ethan-1-ol derivatives (20.1 mg, 0.05 mmol), pentan-1-ol derivatives (16.9 mg, 0.05 mmol), Pd(OAc)$_2$ (2.2 mg, 0.01 mmol), K$_2$S$_2$O$_8$ (81.3 mg, 0.3 mmol), AcOH/Ac$_2$O (50:1, v/v, 1 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 4 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The ratio of the mixture [4j (62%) + 4u (25%)] was determined by GC-MS.

Intramolecular competing experiment:

In a 10 mL test tube equipped with a stir bar, alkyl alcohol derivatives 3r (0.05 mmol), Pd(OAc)$_2$ (1.1 mg, 0.005 mmol), K$_2$S$_2$O$_8$ (40.7 mg, 0.15 mmol), AcOH/Ac$_2$O (50:1, v/v, 0.5 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 24 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 5:1) to give the
corresponding benzylic C-H bond acetoxylated product 8 as the major product (10 mg, ~ 42% yield). The minor regioisomer could not be isolated due to its low content.

(1S)-2-(((E)-1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-1-(p-tolyl)pentyl acetate (8): Colourless oil; R_f = 0.38 (petroleum ether- EtOAc = 5:1); d.r. = 1.4 / 1; (major): ¹H NMR (500 MHz, CDCl₃): δ = 8.02 (s, 1H), 7.27-7.23 (m, 4H), 6.08-6.01 (m, 1H), 4.65-4.56 (m, 1H), 2.35 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H), 1.64-1.43 (m, 4H), 0.92-0.88 (m, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 170.0, 161.3, 149.6, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.1-139.0 (m), 138.3, 137.0-136.9 (m), 134.0, 129.2 (2C), 127.3 (2C), 111.7-111.6 (m), 86.6, 76.1, 32.2, 31.5, 21.1, 18.6, 13.8, 9.9 ppm; (minor): ¹H NMR (500 MHz, CDCl₃): δ = 7.90 (s, 1H), 7.22-7.10 (m, 4H), 6.01-5.95 (m, 1H), 4.71-4.53 (m, 1H), 2.35 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 1.41-1.24 (m, 4H), 0.99-0.92 (m, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 169.9, 161.2, 149.5, 144.2-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.1-139.0 (m), 138.0, 137.0-136.9 (m), 133.9, 129.0 (2C), 127.2 (2C), 111.7-111.6 (m), 86.8, 76.1, 32.2, 31.5, 21.1, 18.9, 13.9, 10.0 ppm.
In a 25 mL test tube equipped with a stir bar, ethanol derivatives (59.2 mg, 0.2 mmol), ethan-\textit{d}_5-1-ol derivatives (60.2 mg, 0.2 mmol), Pd(OAc)$_2$ (8.8 mg, 0.04 mmol), K$_2$S$_2$O$_8$ (325.2 mg, 1.2 mmol), AcOH/Ac$_2$O (200:4, v/v, 4 mL) were added successively. Then the tube was sealed and stirred at 110 °C for 6 h. Upon completion, the resulting mixture was allowed to cool to room temperature, diluted with EtOAc. The solvent was then removed in vacuo and the residue was purified through silica gel chromatography (petroleum ether/EtOAc = 3:1) to give a mixture of 4a and 4a-d$_4$ (50 mg, ~36% yield).
IX. References

X. Characterization data of products

(E)-N-(perfluorophenyl)-2-(((1-phenylpropan-2-yl)oxy)imino)propanamide (3a): Follow the typical process an isolated as colourless oil (66 mg, 57% yield); R_f = 0.55 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 7.93 (s, 1H), 7.34-7.29 (m, 2H), 7.23 (d, J = 7.3 Hz, 3H), 4.65 (h, J = 6.4 Hz, 1H), 3.06 (dd, J_1 = 13.9 Hz, J_2 = 7.0 Hz, 1H), 2.92 (dd, J_1 = 13.9 Hz, J_2 = 5.8 Hz, 1H), 2.09 (s, 3H), 1.38 (d, J = 6.4 Hz, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 161.4, 149.1, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.0, 136.9-136.7 (m), 129.5 (2C), 128.3 (2C), 126.4, 111.8-111.6 (m), 82.3, 42.4, 19.5, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 409.0946; found: 409.0955.

(E)-N-(perfluorophenyl)-2-(((1-phenylbutan-2-yl)oxy)imino)propanamide (3b): Follow the typical process an isolated as colourless oil (90 mg, 75% yield); R_f = 0.56 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 7.83 (s, 1H), 7.32-7.28 (m, 2H), 7.23-7.18 (m, 3H), 4.49-4.43 (m, 1H), 3.07-2.92 (m, 2H), 2.08 (s, 3H), 1.77-1.71 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 161.4, 149.0, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.3, 136.9-136.7 (m), 129.4 (2C), 128.3 (2C), 126.3, 111.8-111.6 (m), 87.5, 40.4, 26.5, 9.8, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 423.1102; found: 423.1107.

(E)-N-(perfluorophenyl)-2-(((1-phenylpentan-2-yl)oxy)imino)propanamide (3c): Follow the typical process an isolated as colourless oil (83 mg, 67% yield); R_f = 0.61 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 7.81 (s, 1H), 7.32-7.28 (m, 2H), 7.21 (d, J = 7.6 Hz, 3H), 4.56-4.51 (m, 1H), 3.05-2.92 (m, 2H), 2.08 (s, 3H), 1.78-1.68 (m, 1H), 1.69-1.59 (m, 1H), 1.59-1.48 (m, 1H), 1.47-1.42 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 161.4, 148.9, 144.2-144.1 (m), 142.0-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 138.3, 137.0-136.7(m), 129.5 (2C), 128.3 (2C), 126.3, 111.8-111.6 (m), 86.2, 41.0, 35.7, 18.8, 14.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 437.1259; found: 437.1261.
(E)-N-(perfluorophenyl)-2-(((1-phenylhexan-2-yl)oxy)imino)propanamide (3d): Follow the typical process an isolated as colourless oil (72 mg, 56% yield); \(R_f = 0.62 \) (petroleum ether-EtOAc = 10:1); \(^1\)HNMR (500 MHz, CDCl\(_3\)): \(\delta = 7.83 \) (s, 1H), 7.33-7.28 (m, 2H), 7.23-7.18 (m, 3H), 4.55-4.50 (m, 1H), 3.04-2.94 (m, 2H), 2.08 (s, 3H), 1.80-1.71 (m, 1H), 1.70-1.62 (m, 1H), 1.52-1.46 (m, 1H), 1.44-1.35 (m, 3H), 0.94 (t, \(J = 7.2 \) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.4, 148.9, 144.1-144.0 \) (m), 142.1-142.0 (m), 141.0-140.9 (m), 139.0-138.8 (m), 138.3, 136.9-136.7 (m), 129.4 (2C), 128.3 (2C), 126.3, 111.8-111.5 (m), 86.4, 40.9, 33.2, 27.6, 22.6, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 451.1415; found: 451.1418.

(E)-2-(((4-methyl-1-phenylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3e): Follow the typical process an isolated as colourless oil (81 mg, 63% yield); \(R_f = 0.61 \) (petroleum ether-EtOAc = 10:1); \(^1\)HNMR (500 MHz, CDCl\(_3\)): \(\delta = 7.79 \) (s, 1H), 7.33-7.28 (m, 2H), 7.23-7.18 (m, 3H), 4.65-4.60 (m, 1H), 3.03-2.93 (m, 2H), 2.08 (s, 3H), 1.85-1.79 (m, 1H), 1.75-1.70 (m, 1H), 1.49-1.41 (m, 1H), 0.96 (dd, \(J_1 = 7.5 \) Hz, \(J_2 = 6.8 \) Hz, 6H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.4, 148.8, 144.1-144.0 \) (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.3, 137.0-136.8 (m), 129.4 (2C), 128.3 (2C), 126.3, 111.8-111.5 (m), 84.8, 42.6, 41.6, 24.8, 23.2, 22.2, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 451.1415; found: 451.1417.

(E)-2-(((3-methyl-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3f): Follow the typical process an isolated as colourless oil (79 mg, 64% yield); \(R_f = 0.60 \) (petroleum ether-EtOAc = 10:1); \(^1\)HNMR (500 MHz, CDCl\(_3\)): \(\delta = 7.68 \) (s, 1H), 7.30-7.22 (m, 4H), 7.18 (t, \(J = 7.3 \) Hz, 1H), 4.35 (dt, \(J_1 = 9.0 \) Hz, \(J_2 = 4.6 \) Hz, 1H), 2.99 (dd, \(J_1 = 14.3 \) Hz, \(J_2 = 4.2 \) Hz, 1H), 2.93 (dd, \(J_1 = 14.3 \) Hz, \(J_2 = 8.7 \) Hz, 1H), 2.07 (s, 3H), 1.08-1.06 (m, 7H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.4, 148.6, 144.2-144.0 \) (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0, 138.9-138.8 (m), 136.9-136.8 (m), 129.4 (2C), 128.3 (2C), 126.2, 111.8-111.5 (m), 91.3, 37.7, 31.3, 18.6, 17.9, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 437.1259; found: 437.1262.
(E)-2-((1-cyclohexyl-2-phenylethoxy)imino)-N-(perfluorophenyl)propanamide (3g): Follow the typical process an isolated as colourless oil (84 mg, 62% yield); \(R_f = 0.61 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.68 \) (s, 1H), 7.31-7.27 (m, 2H), 7.23-7.16 (m, 3H), 4.38-4.31 (m, 1H), 3.02 (dd, \(J_1 = 14.3 \) Hz, \(J_2 = 4.0 \) Hz, 1H), 2.93 (dd, \(J_1 = 14.3 \) Hz, \(J_2 = 8.8 \) Hz, 1H), 2.06 (s, 3H), 1.92 (d, \(J = 12.4 \) Hz, 1H), 1.83-1.81 (m, 3H), 1.74 (d, \(J = 11.2 \) Hz, 2H), 1.34-1.12 (m, 5H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.4, 148.4, 144.1-144.0 \) (m), 142.1-142.0 (m), 141.0-140.9 (m), 139.0, 138.8-138.7 (m), 136.9-136.7 (m), 129.4 (2C), 128.3 (2C), 126.1, 111.8-111.6 (m), 90.9, 41.3, 38.0, 29.2, 28.3, 26.5, 26.2, 26.2, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]\(^+\) 477.1572; found: 477.1573.

(E)-2-(((5-chloro-1-phenylpentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3h): Follow the typical process an isolated as yellow oil (103 mg, 77% yield); \(R_f = 0.40 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.79 \) (s, 1H), 7.33-7.29 (m, 2H), 7.25-7.18 (m, 3H), 4.56 (p, \(J = 6.0 \) Hz, 1H), 3.95 (t, \(J = 6.2 \) Hz, 2H), 3.04 (dd, \(J_1 = 14.1 \) Hz, \(J_2 = 7.2 \) Hz, 1H), 2.97 (dd, \(J_1 = 14.1 \) Hz, \(J_2 = 5.5 \) Hz, 1H), 2.08 (s, 3H), 2.03-1.96 (m, 1H), 1.96-1.84 (m, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.2, 149.5, 144.2-144.0 \) (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.1-138.9 (m), 137.8, 136.9-136.8 (m), 129.4 (2C), 128.4 (2C), 126.5, 111.6-111.4 (m), 85.5, 44.8, 41.0, 30.8, 28.6, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]\(^+\) 471.0869; found: 471.0870.

(E)-2-(((1,3-diphenylpropan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3i): Follow the typical process an isolated as colourless oil (58 mg, 42% yield); \(R_f = 0.52 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.57 \) (s, 1H), 7.36-7.18 (m, 8H), 7.14 (d, \(J = 8.4 \) Hz, 2H), 4.74 (p, \(J = 5.9 \) Hz, 1H), 3.07-2.95 (m, 4H), 2.04 (s, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.2, 149.1, 144.1-144.0 \) (m), 142.1-142.0 (m), 141.0-140.8 (m), 138.9-138.8 (m), 138.0 (2C), 136.9-136.8 (m), 129.5 (4C), 128.4 (4C), 126.5 (2C), 111.7-111.4 (m), 86.9, 40.5 (2C), 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]\(^+\) 485.1259; found: 485.1265.
(E)-2-(((1-(4-fluorophenyl)-3-phenylpropan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3j): Follow the typical process an isolated as colourless oil (72 mg, 50% yield); R_f = 0.51 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl_3): δ = 7.63 (s, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.25-7.20 (m, 3H), 7.17 (dd, J_1 = 8.5 Hz, J_2 = 5.4 Hz, 2H), 7.00 (t, J = 8.7 Hz, 2H), 4.74 (p, J = 6.4 Hz, 1H), 3.11-2.88 (m, 4H), 2.05 (s, 3H) ppm; 13C NMR (126 MHz, CDCl_3): δ = 161.7 (d, J = 244.3 Hz), 161.2, 149.4, 144.2-144.1 (m), 142.1-142.0 (m), 141.2-141.1 (m), 138.9-138.8 (m), 137.8, 137.0-136.7 (m), 133.5 (d, J = 3.4 Hz), 130.8 (d, J = 7.2 Hz, 2C), 129.4 (2C), 128.4 (2C), 126.5, 115.2 (d, J = 21.3 Hz, 2C), 111.6-111.3 (m), 86.8, 40.4, 39.5, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 503.1165; found: 503.1166.

(E)-2-(((1-(4-methoxyphenyl)-3-phenylpropan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3k): Follow the typical process an isolated as yellow oil (61 mg, 41% yield); R_f = 0.40 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl_3): δ = 7.61 (s, 1H), 7.33-7.28 (m, 2H), 7.24-7.19 (m, 3H), 7.13 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.74 (p, J = 6.4 Hz, 1H), 3.78 (s, 3H), 3.00 (d, J = 6.4 Hz, 2H), 2.97 (dd, J_1 = 6.3 Hz, J_2 = 2.8 Hz, 2H), 2.05 (s, 3H) ppm; 13C NMR (126 MHz, CDCl_3): δ = 161.3, 158.3, 149.1, 144.3-144.1 (m), 142.2-142.1 (m), 141.1-140.9 (m), 139.0-138.9 (m), 138.1, 136.9-136.8 (m), 130.4 (2C), 129.9, 129.5 (2C), 128.4 (2C), 126.4, 113.8 (2C), 111.7-111.5 (m), 87.1, 55.2, 40.4, 39.5, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 515.1365; found: 515.1365.

(E)-2-(((1,4-diphenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3l): Follow the typical process an isolated as yellowish oil (79 mg, 55% yield); R_f = 0.54 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl_3): δ = 7.63 (s, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.25-7.20 (m, 3H), 7.17 (dd, J_1 = 8.5 Hz, J_2 = 5.4 Hz, 2H), 7.00 (t, J = 8.7 Hz, 2H), 4.74 (p, J = 6.4 Hz, 1H), 3.11-2.88 (m, 4H), 2.05 (s, 3H) ppm; 13C NMR (126 MHz, CDCl_3): δ = 161.7 (d, J = 244.3 Hz), 161.2, 149.4, 144.2-144.1 (m), 142.1-142.0 (m), 141.2-141.1 (m), 138.9-138.8 (m), 137.8, 137.0-136.7 (m), 133.5 (d, J = 3.4 Hz), 130.8 (d, J = 7.2 Hz, 2C), 129.4 (2C), 128.4 (2C), 126.5, 115.2 (d, J = 21.3 Hz, 2C), 111.6-111.3 (m), 86.8, 40.4, 39.5, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 503.1165; found: 503.1166.
NMR (500 MHz, CDCl$_3$): δ = 7.79 (s, 1H), 7.31 (t, $J = 7.5$ Hz, 4H), 7.21 (q, $J_1 = 7.6$ Hz, $J_2 = 6.8$ Hz, 6H), 4.59-4.54 (m, 1H), 3.03 (qd, $J_1 = 14.1$ Hz, $J_2 = 6.3$ Hz, 2H), 2.86-2.81 (m, 1H), 2.78-2.71 (m, 1H), 2.11-1.99 (m, 5H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.3, 149.2, 144.2-144.0 (m), 142.2-142.0 (m), 141.4, 141.2-141.0 (m), 139.0-138.8 (m), 137.9, 137.0-136.8 (m), 129.4 (2C), 128.5 (2C), 128.4 (2C), 128.4 (2C), 126.4, 126.0, 111.7-111.5 (m), 85.5, 40.9, 35.0, 31.7, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 499.1415; found: 499.1424.

(E)-N-(perfluorophenyl)-2-(((1-phenyl-4-(o-tolyl)butan-2-yl)oxy)imino)propanamide (3m): Follow the typical process an isolated as yellowish oil (96 mg, 65% yield); R_f = 0.53 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 7.81 (s, 1H), 7.34-7.30 (m, 2H), 7.25-7.20 (m, 3H), 7.18-7.11 (m, 4H), 4.64-4.58 (m, 1H), 3.09 (dd, $J_1 = 14.0$ Hz, $J_2 = 7.2$ Hz, 1H), 3.01 (dd, $J_1 = 14.1$ Hz, $J_2 = 5.6$ Hz, 1H), 2.86-2.80 (m, 1H), 2.75-2.67 (m, 1H), 2.31 (s, 3H), 2.12 (s, 3H), 2.04-1.96 (m, 2H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.3, 149.3, 144.2-144.1 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.7, 138.9-138.8 (m), 137.9, 136.9-136.8 (m), 135.8, 130.3, 129.4 (2C), 128.8, 128.4 (2C), 126.4, 126.2, 126.1, 111.7-111.4 (m), 85.8, 40.9, 33.9, 29.1, 19.2, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 513.1572; found: 513.1579.

(E)-N-(perfluorophenyl)-2-(((1-phenyl-4-(4-(trifluoromethyl)phenyl)butan-2-yl)oxy)imino)propanamide (3n): Follow the typical process an isolated as yellowish oil (122 mg, 75% yield); R_f = 0.26 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 7.80 (s, 1H), 7.56 (d, $J = 8.1$ Hz, 2H), 7.31 (q, $J = 7.6$ Hz, 4H), 7.25-7.19 (m, 3H), 4.59-4.54 (m, 1H), 3.08 (dd, $J_1 = 14.0$ Hz, $J_2 = 7.1$ Hz, 1H), 3.00 (dd, $J_1 = 14.0$ Hz, $J_2 = 5.7$ Hz, 1H), 2.92-2.87 (m, 1H), 2.83-2.77 (m, 1H), 2.11-2.01 (m, 5H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.2, 149.5, 145.6, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 139.1-138.9 (m), 137.7, 137.0-136.8 (m), 129.4 (2C), 128.7 (2C), 128.5 (q, $J = 32.3$ Hz), 128.4 (2C), 126.5, 125.4 (q, $J = 3.8$ Hz, 2C), 124.3 (q, $J = 272.2$ Hz), 111.7-111.4 (m), 85.3, 41.0, 34.6, 31.6, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 567.1289; found: 567.1297.
(E)-2-(((4-(2-fluorophenyl)-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3o):
Follow the typical process an isolated as yellow oil (92 mg, 62% yield); Rf = 0.52 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.82 (s, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.23-7.16 (m, 5H), 7.10-7.00 (m, 2H), 4.56 (ddd, J1 = 12.5 Hz, J2 = 7.4 Hz, J3 = 5.3 Hz, 1H), 3.09-2.98 (m, 2H), 2.86 (ddd, J1 = 14.7 Hz, J2 = 9.1 Hz, J3 = 6.1 Hz, 1H), 2.78 (dt, J1 = 14.3 Hz, J2 = 7.9 Hz, 1H), 2.12-1.99 (m, 5H) ppm; 13C NMR (126 MHz, CDCl3): δ = 161.3, 161.1 (d, J = 244.5 Hz), 149.3, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.9, 136.9-136.7 (m), 130.6 (d, J = 4.8 Hz), 129.4 (2C), 128.3 (2C), 128.2, 127.8 (d, J = 8.1 Hz), 126.4, 124.0 (d, J = 3.5 Hz), 115.3 (d, J = 22.0 Hz), 111.7-111.5 (m), 85.5, 40.8, 33.7, 25.1 (d, J = 2.4 Hz), 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 517.1321; found: 517.1323.

(E)-2-(((4-(3-fluorophenyl)-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3p):
Follow the typical process an isolated as yellow oil (98 mg, 66% yield); Rf = 0.51 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.82 (s, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.27-7.19 (m, 4H), 6.99-6.86 (m, 3H), 4.59-4.53 (m, 1H), 3.07 (dd, J1 = 14.0 Hz, J2 = 7.1 Hz, 1H), 3.00 (dd, J1 = 14.0 Hz, J2 = 5.6 Hz, 1H), 2.87-2.81 (m, 1H), 2.77-2.70 (m, 1H), 2.11-1.98 (m, 5H) ppm; 13C NMR (126 MHz, CDCl3): δ = 162.9 (d, J = 245.6 Hz), 161.2, 149.3, 144.2-144.1 (m), 144.0 (d, J = 7.4 Hz), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 137.7, 136.9-136.7 (m), 129.8 (d, J = 8.5 Hz), 129.4 (2C), 128.4 (2C), 126.5, 124.0 (d, J = 2.7 Hz), 115.2 (d, J = 20.9 Hz), 112.9 (d, J = 20.9 Hz), 111.7-111.4 (m), 85.3, 40.9, 34.6, 31.5 (d, J = 1.7 Hz), 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 517.1321; found: 517.1324.

(E)-2-(((4-(4-fluorophenyl)-1-phenylbutan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3q):
Follow the typical process an isolated as colourless oil (93 mg, 63% yield); Rf = 0.50 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.79 (s, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.24-7.18 (m, 3H), 7.13 (dd, J1 = 8.4 Hz, J2 = 5.5 Hz, 2H), 6.98 (t, J = 8.7 Hz, 2H), 4.57-4.51 (m, 1H), 3.05 (dd, J1 = 14.0 Hz, J2 = 7.1 Hz, 1H), 2.99 (dd, J1 = 14.0 Hz, J2 = 5.6 Hz, 1H), 2.80 (ddd, J1 = 14.7 Hz, J2 = 9.5 Hz, J3 = 5.7 Hz, J4 = 1.7 Hz).
Hz, 1H), 2.74-2.66 (m, 1H), 2.10 (s, 3H), 2.08-1.94 (m, 2H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.3\) (d, \(J = 243.9\) Hz), 161.2, 149.3, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 137.8, 137.0 (d, \(J = 3.4\) Hz), 136.9-136.7 (m), 129.7 (d, \(J = 8.0\) Hz, 2C), 129.4 (2C), 128.4 (2C), 126.4, 115.2 (d, \(J = 21.2\) Hz, 2C), 111.6-111.4 (m), 85.3, 41.0, 35.1, 30.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na\(^+\)] 517.1321; found: 517.1323.

(E)-N-(perfluorophenyl)-2-(((1-(p-tolyl)pentan-2-yl)oxy)imino)propanamide (3r): Follow the typical process an isolated as colourless oil (77 mg, 60% yield); \(R_f = 0.64\) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.84\) (s, 1H), 7.10 (s, 4H), 4.54-4.48 (m, 1H), 3.01-2.88 (m, 2H), 2.29 (s, 3H), 2.08 (s, 3H), 1.76-1.68 (m, 1H), 1.66-1.59 (m, 1H), 1.56-1.50 (m, 1H), 1.48-1.40 (m, 1H), 0.97 (t, \(J = 7.3\) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.4, 148.8, 144.1-144.0\) (m), 142.1-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 135.8, 135.2, 129.3 (2C), 129.0 (2C), 111.8-111.7 (m), 86.3, 40.5, 35.6, 20.9, 18.8, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na\(^+\)] 451.1415; found: 451.1419.

(E)-N-(perfluorophenyl)-2-(((1-(m-tolyl)pentan-2-yl)oxy)imino)propanamide (3s): Follow the typical process an isolated as colourless oil (69 mg, 54% yield); \(R_f = 0.64\) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.84\) (s, 1H), 7.19 (t, \(J = 7.5\) Hz, 1H), 7.02 (d, \(J = 7.9\) Hz, 3H), 4.56-4.50 (m, 1H), 3.00-2.89 (m, 2H), 2.34 (s, 3H), 2.09 (s, 3H), 1.76-1.70 (m, 1H), 1.67-1.61 (m, 1H), 1.57-1.51 (m, 1H), 1.48-1.41 (m, 1H), 0.97 (t, \(J = 7.3\) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.4, 148.8, 144.2-144.0\) (m), 142.1-142.0 (m), 141.1-141.0 (m), 139.0-138.8 (m), 138.2, 137.9, 136.9-136.7 (m), 130.2, 128.2, 127.0, 126.4, 111.8-111.5 (m), 86.2, 40.9, 35.7, 21.3, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na\(^+\)] 451.1415; found: 451.1424.

(E)-2-(((1-(3,5-dimethylphenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3t): Follow the typical process an isolated as colourless oil (74 mg, 56% yield); \(R_f = 0.67\) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.83\) (s, 1H), 6.83 (s, 3H), 4.51 (ddd, \(J_1 = 7.3\) Hz, \(J_2 = 5.1\) Hz, \(J_3 = 2.2\) Hz, 1H), 2.94 (ddd, \(J_1 = 14.0\) Hz, \(J_2 = 7.2\) Hz, 1H), 2.86 (ddd, \(J_1 = 13.9\) Hz, \(J_2 = 5.5\) Hz, 1H), 2.29 (s, 6H), 2.09 (s, 3H), 1.76-1.68 (m, 1H), 1.67-1.59 (m, 1H), 1.57-1.50 (m, 1H), 1.49-1.42 (m, 1H), 0.97 (t, \(J = 7.3\) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 161.5, 148.7, 144.1-144.0\) (m), 142.2-
(E)-2-(((1-(4-((tert-butyl)phenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3u):
Follow the typical process an isolated as yellow solid (80 mg, 57% yield); Rf = 0.64 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.96 (s, 1H), 7.32 (d, 1H), 7.14 (d, J = 8.2 Hz, 1H), 2.09 (s, 3H), 1.74-1.60 (m, 1H), 1.56-1.46 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H); ppm; 13C NMR (126 MHz, CDCl3): δ = 161.4, 149.2, 149.0, 144.3, 142.2, 141.1, 139.0, 136.9, 135.1, 129.1, 125.2, 111.7-111.6, 86.2, 40.2, 35.7, 34.4, 31.3; HRMS (ESI-TOF): calcd. [M+Na]⁺ 465.1572; found: 465.1581.

(E)-2-(((1-(1,1′-biphenyl)-4-yl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3v):
Follow the typical process an isolated as white solid (82 mg, 56% yield); Rf = 0.33 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.60 (s, 1H), 7.59-7.50 (m, 4H), 7.37-7.27 (m, 3H), 4.63-4.57 (m, 1H), 2.09 (s, 3H), 1.66-1.50 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H); ppm; 13C NMR (126 MHz, CDCl3): δ = 161.4, 149.2, 149.0, 144.3, 142.2, 141.1, 139.0, 136.9, 135.1, 129.1, 125.2, 111.7-111.6, 86.2, 40.2, 35.7, 34.4, 31.3; HRMS (ESI-TOF): calcd. [M+Na]⁺ 513.1572; found: 513.1573.

(E)-2-(((1-(4-methoxyphenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3w):
Follow the typical process as an isolated as colourless oil (61 mg, 46% yield); Rf = 0.48 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.87 (s, 1H), 7.15-7.08 (m, 2H), 6.87-6.80 (m, 2H), 4.51-4.46 (m, 1H), 3.77 (s, 3H), 2.97-2.86 (m, 2H), 2.08 (s, 3H), 1.66-1.57 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H); ppm; 13C NMR (126 MHz, CDCl3): δ = 161.5, 158.2, 148.9, 144.2-144.1 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.0-138.9 (m), 136.9-136.8 (m), 130.4 (2C), 128.7 (2C), 127.2, 126.7 (2C), 126.5 (2C), 111.7-111.4 (m), 86.0, 41.0, 35.8, 18.8, 14.1, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 493.1885; found: 493.1889.
(E)-N-(perfluorophenyl)-2-(((1-(4-(trifluoromethoxy)phenyl)pentan-2-yl)oxy)imino)propanamide (3x): Follow the typical process an isolated as yellow oil (81 mg, 54% yield); Rf = 0.31 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.91 (s, 1H), 7.22 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 4.59-4.45 (m, 1H), 3.07-2.90 (m, 2H), 2.08 (s, 3H), 1.78-1.68 (m, 1H), 1.65-1.60 (m, 1H), 1.57-1.49 (m, 1H), 1.48-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl3): δ = 161.2, 149.4, 147.9, 144.1-144.0 (m), 142.2-141.9 (m), 139.1-138.9 (m), 137.0-136.8 (m), 136.9, 130.7 (2C), 120.8 (2C), 120.5 (q, J = 257.4 Hz), 111.7-111.5 (m), 85.8, 40.0, 35.6, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 521.1082; found: 521.1083.

(E)-2-(((1-(4-fluorophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3y): Follow the typical process an isolated as colourless oil (53 mg, 41% yield); Rf = 0.60 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.90 (s, 1H), 7.18-7.13 (m, 2H), 7.02-6.95 (m, 2H), 4.53-4.45 (m, 1H), 3.02-2.87 (m, 2H), 2.08 (s, 3H), 1.78-1.66 (m, 1H), 1.65-1.57 (m, 1H), 1.56-1.47 (m, 1H), 1.46-1.39 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl3): δ = 161.6 (d, J = 245.0 Hz), 161.3, 149.1, 144.2-144.0 (m), 142.3-142.0 (m), 141.1-140.9 (m), 139.1-138.6 (m), 137.0-136.7 (m), 133.8 (d, J = 3.4 Hz), 130.8 (d, J = 7.1 Hz, 2C), 115.1 (d, J = 20.9 Hz, 2C), 111.8-111.4 (m), 86.1, 39.9, 35.6, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 455.1165; found: 455.1167.

(E)-2-(((1-(4-chlorophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3z): Follow the typical process an isolated as colourless oil (56 mg, 42% yield); Rf = 0.42 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.83 (s, 1H), 7.26 (dt, J1 = 8.9 Hz, J2 = 2.2 Hz, 2H), 7.16-7.11 (m, 2H), 4.59-4.39 (m, 1H), 2.96-2.93 (m, 2H), 2.07 (s, 3H), 1.77-1.66 (m, 1H), 1.65-1.57 (m, 1H), 1.55-1.48 (m, 1H), 1.47-1.40 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl3): δ = 161.2, 149.2, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.1-138.8 (m), 137.0-136.9 (m), 136.8, 132.2, 130.8 (2C), 128.4 (2C), 111.6-111.5 (m), 85.8, 40.2, 35.6, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 471.0869; found: 471.0870.
(E)-2-(((1-(4-bromophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3aa): Follow the typical process an isolated as white solid (86 mg, 58% yield); R_f = 0.44 (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃): δ = 7.79 (s, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.3 Hz, 2H), 4.50 (dt, J₁ = 12.4 Hz, J₂ = 6.2 Hz, 1H), 2.93 (d, J = 6.2 Hz, 2H), 2.07 (s, 3H), 1.76-1.67 (m, 1H), 1.64-1.57 (m, 1H), 1.55-1.48 (m, 1H), 1.47-1.39 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 161.2, 149.2, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.1-138.8 (m), 137.0-136.9 (m), 137.3, 131.4 (2C), 131.2 (2C), 120.2, 111.7-111.5 (m), 85.7, 40.3, 35.6, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 515.0364; found: 515.0369.

(E)-2-(((1-(3-chloro-4-methylphenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ab): Follow the typical process an isolated as colourless oil (82 mg, 59% yield); R_f = 0.60 (petroleum ether-EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃): δ = 7.88 (s, 1H), 7.20 (d, J = 1.6 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 6.98 (dd, J₁ = 7.8 Hz, J₂ = 1.8 Hz, 1H), 4.49 (ddd, J₁ = 7.3 Hz, J₂ = 5.2 Hz, J₃ = 2.1 Hz, 1H), 2.97-2.86 (m, 2H), 2.32 (s, 3H), 2.08 (s, 3H), 1.76-1.67 (m, 1H), 1.63-1.59 (m, 1H), 1.55-1.48 (m, 1H), 1.47-1.40 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 161.3, 149.2, 144.1-144.0 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.1-138.7 (m), 137.4, 136.8-136.7 (m), 134.1, 133.9, 130.8, 129.9, 127.7, 111.8-111.5 (m), 85.9, 40.0, 35.6, 19.5, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 485.1026; found: 485.1026.

(E)-2-(((1-(3-nitrophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ac): Follow the typical process an isolated as yellow oil (59 mg, 43% yield); R_f = 0.57 (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃): δ = 8.10 (d, J = 7.6 Hz, 2H), 7.93 (s, 1H), 7.57-7.43 (m, 2H), 4.56 (p, J = 6.1 Hz, 1H), 3.10 (d, J = 6.3 Hz, 2H), 2.09 (s, 3H), 1.79-1.71 (m, 1H), 1.66-1.58 (m, 1H), 1.56-1.50 (m, 1H), 1.49-1.43 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 161.0, 149.7, 148.3, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 140.1, 139.0-138.7 (m), 137.0-136.7 (m), 135.7, 129.2, 124.2, 121.6, 111.5-111.2 (m), 85.4, 40.1, 35.7, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 482.1110; found: 482.1113.
(E)-2-(((1-(4-nitrophenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ad): Follow the typical process an isolated as yellow oil (66 mg, 66% yield); R$_f$ = 0.31 (petroleum ether-EtOAc = 5:1); 1H NMR (500 MHz, CDCl$_3$): δ = 8.20-8.13 (m, 2H), 7.88 (s, 1H), 7.37 (d, J = 8.7 Hz, 2H), 4.56 (ddd, J_1 = 12.4 Hz, J_2 = 7.0 Hz, J_3 = 5.4 Hz, 1H), 3.10 (dd, J_1 = 6.1 Hz, J_2 = 2.1 Hz, 2H), 2.08 (s, 3H), 1.79-1.70 (m, 1H), 1.64-1.60 (m, 1H), 1.56-1.49 (m, 1H), 1.47-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.0, 149.8, 146.8, 146.0, 144.2-144.0 (m), 142.1-142.0 (m), 141.1-141.0 (m), 139.2-138.9 (m), 137.0-136.8 (m), 130.2 (2C), 123.5 (2C), 111.5-111.2 (m), 85.3, 40.5, 35.7, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 482.1110; found: 482.1110.

(E)-N-(perfluorophenyl)-2-(((1-(4-(trifluoromethyl)phenyl)pentan-2-yl)oxy)imino)propanamide (3ae): Follow the typical process an isolated as colourless oil (80 mg, 55% yield); R$_f$ = 0.33 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 7.80 (s, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.55 (p, J_1 = 6.8 Hz, J_2 = 6.2 Hz, 1H), 3.07-3.02 (m, 2H), 2.08 (s, 3H), 1.80-1.71 (m, 1H), 1.67-1.59 (m, 1H), 1.57-1.51 (m, 1H), 1.49-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 161.2, 149.3, 144.1-144.0 (m), 142.5, 142.1-142.0 (m), 141.2-141.0 (m), 139.0-138.9 (m), 137.0-136.8 (m), 129.7 (2C), 128.8 (q, J = 32.3 Hz), 125.2 (q, J = 3.9 Hz, 2C), 124.2 (q, J = 272.5 Hz), 111.6-111.4 (m), 85.6, 40.7, 35.7, 18.7, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 505.1133; found: 505.1133.

Methyl(E)-3-(2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl)benzoate (3af): Follow the typical process an isolated as colourless oil (82 mg, 58% yield); R$_f$ = 0.21 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): δ = 7.91 (s, 1H), 7.89-7.83 (m, 2H), 7.41-7.34 (m, 2H), 4.59-4.51 (m, 1H), 3.91 (s, 3H), 3.02 (dd, J_1 = 6.2 Hz, J_2 = 3.2 Hz, 2H), 2.07 (s, 3H), 1.77-1.69 (m, 1H), 1.66-1.58 (m, 1H), 1.56-1.48 (m, 1H), 1.48-1.38 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): δ = 167.0, 161.2, 149.2, 144.2-144.1 (m), 142.2-142.0 (m), 141.0-140.9 (m), 139.0-138.8 (m), 138.6, 136.9-136.8 (m), 134.0, 130.5, 130.3, 128.4, 127.6, 111.8-111.5 (m), 85.8, 52.1, 40.6, 35.7, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 495.1314; found: 495.1314.
Methyl(E)-4-((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl)benzoate (3ag): Follow the typical process an isolated as colourless oil (57 mg, 40% yield); Rf = 0.20 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.98-7.94 (m, 2H), 7.71 (s, 1H), 7.28 (d, J = 8.3 Hz, 2H), 4.58-4.52 (m, 1H), 3.88 (s, 3H), 3.03 (d, J = 6.3 Hz, 2H), 2.05 (s, 3H), 1.78-1.69 (m, 1H), 1.66-1.58 (m, 1H), 1.56-1.50 (m, 1H), 1.48-1.41 (m, 1H), 0.96 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl3): δ = 166.8, 161.2, 149.1, 144.1-144.0 (m), 143.9, 142.1-141.9 (m), 141.1-140.9 (m), 139.0-138.8 (m), 137.0-136.8 (m), 129.6 (2C), 129.4 (2C), 128.3, 111.8-111.5 (m), 85.7, 52.0, 41.0, 35.7, 18.7, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 495.1314; found: 495.1317.

(E)-2-(((1-(4-(1-((1,3-dioxoisooindolin-2-yl)oxy)ethyl)phenyl)pentan-2-yl)oxy)imino)-N-(perfluorophenyl)propanamide (3ah): Follow the typical process an isolated as yellow oil (118 mg, 65% yield); Rf = 0.36 (petroleum ether-EtOAc = 5:1); 1H NMR (500 MHz, CDCl3): δ = 7.94 (d, J = 8.7 Hz, 1H), 7.79-7.73 (m, 2H), 7.70 (dt, J1 = 6.0 Hz, J2 = 3.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.49-5.14 (m, 1H), 4.50-4.47 (m, 1H), 3.02-2.88 (m, 2H), 2.04 (d, J = 7.6 Hz, 2H), 1.70 (dd, J1 = 6.5 Hz, J2 = 2.2 Hz, 3H), 1.68-1.63 (m, 2H), 1.61-1.55 (m, 1H), 1.52-1.45 (m, 1H), 1.43-1.38 (m, 1H), 0.93 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz CDCl3) (Major): δ = 163.8 (2C), 161.3, 149.2, 144.1-144.0 (m), 142.1-142.0 (m), 139.1, 139.0-138.7(m), 137.0, 136.9-136.8 (m), 134.3, 129.4 (2C), 128.8 (2C), 127.7 (2C), 123.3 (2C), 111.8-111.5 (m), 85.9, 84.9, 40.4, 35.5, 20.0, 18.6, 14.0, 9.8 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 626.1685; found: 626.1690.

(E)-N-(perfluorophenyl)-2-(((1-(thiophen-2-yl)pentan-2-yl)oxy)imino)propanamide (3ai): Follow the typical process an isolated as yellow oil (84 mg, 67% yield); Rf = 0.60 (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl3): δ = 7.98 (s, 1H), 7.17 (dd, J1 = 5.1 Hz, J2 = 1.1 Hz, 1H), 6.95 (dd, J1 = 5.1 Hz, J2 = 3.4 Hz, 1H), 6.85 (d, J = 3.5 Hz, 1H), 4.52 (dd, J1 = 7.6 Hz, J2 = 5.4 Hz, 1H), 3.21 (d, J = 5.9 Hz, 2H), 2.13 (s, 3H), 1.78-1.70 (m, 1H), 1.69-1.63 (m, 1H), 1.57-1.49 (m, 1H), 1.49-1.41 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H) ppm; 13C NMR (126 MHz, CDCl3): δ = 161.3, 149.5, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.9, 139.1-138.8 (m), 137.0-136.9 (m), 126.7, 126.1, 124.1, 111.8-111.7 (m), 85.6, 35.3, 34.7, 18.7, 14.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 443.0823; found: 443.0826.
(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl acetate (4a): Follow the typical process an isolated as yellowish oil (124 mg, 83% yield); R_f = 0.56 (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃): δ = 8.13 (s, 1H), 4.49 (m, 1H), 4.28 (d, J = 5.1 Hz, 2H), 2.12 (s, 3H), 2.09 (s, 3H), 1.81-1.69 (m, 1H), 1.54-1.40 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 170.9, 161.2, 150.0, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.1-136.8 (m), 111.7-111.4 (m), 82.8, 65.1, 32.7, 20.8, 18.5, 14.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 419.1001; found: 419.1005.

(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)propyl acetate (4b): Follow the typical process an isolated as yellow oil (65 mg, 59% yield); R_f = 0.46 (petroleum ether-EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃): δ = 8.14 (s, 1H), 4.65-4.58 (m, 1H), 4.29-4.21 (m, 2H), 2.10 (d, J = 6.2 Hz, 6H), 1.37 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 170.8, 161.2, 150.1, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 139.0-138.8 (m), 137.0-136.7 (m), 111.7-111.4 (m), 79.0, 65.9, 20.7, 16.4, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]⁺ 391.0688; found: 391.0688.
(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)propane-1,3-diyl diacetate (4b*): Follow the typical process an isolated as yellow oil (99 mg, 78% yield); $R_f = 0.28$ (petroleum ether-EtOAc = 5:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.18$ (s, 1H), 4.67 (p, $J = 5.2$ Hz, 1H), 4.35 (d, $J = 5.2$ Hz, 4H), 2.11 (s, 3H), 2.09 (s, 6H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 170.6$ (2C), 160.9, 151.3, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 111.5-111.3 (m), 80.3, 62.2 (2C), 20.6 (2C), 10.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 449.0742; found: 449.0744.

(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)hexyl acetate (4c): Follow the typical process an isolated as yellow oil (81 mg, 66% yield); $R_f = 0.21$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.13$ (s, 1H), 4.50-4.45 (m, 1H), 4.28 (d, $J = 5.1$ Hz, 2H), 2.12 (s, 3H), 2.09 (s, 3H), 1.79-1.72 (m, 1H), 1.69-1.63 (m, 2H), 1.48-1.43 (m, 1H), 1.41-1.36 (m, 2H), 0.94 (t, $J = 7.1$ Hz, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 170.9$, 161.2, 150.0, 144.2-144.0 (m), 142.2-142.1 (m), 141.1-140.9 (m), 139.1-138.9 (m), 136.9-136.7 (m), 111.7-111.4 (m), 83.0, 65.1, 30.4, 27.4, 22.6, 20.8, 13.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 433.1157; found: 433.1165.

(E)-3-methyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)butyl acetate (4d): Follow the typical process an isolated as yellow oil (114 mg, 96% yield); $R_f = 0.21$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.18$ (s, 1H), 4.34-4.26 (m, 2H), 4.25-4.21 (m, 1H), 2.12-2.03 (m, 7H), 1.01 (dd, $J_1 = 9.9$ Hz, $J_2 = 6.9$ Hz, 6H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 170.8$, 161.2, 149.8, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-140.9 (m), 139.1-138.6 (m), 136.9-136.6 (m), 111.8-111.5 (m), 87.7, 63.5, 29.3, 20.6, 18.3, 17.9, 9.7 ppm; HRMS (ESI-TOF): calcd. [M+Na]$^+$ 419.1001; found: 419.1005.

(E)-2-cyclohexyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4e): Follow the typical process an isolated as colourless oil (129 mg, 93% yield); $R_f = 0.37$ (petroleum ether-EtOAc = 10:1); 1H NMR (500 MHz, CDCl$_3$): $\delta = 8.13$ (s, 1H), 4.38-4.25 (m, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 1.88-1.69 (m, 6H), 1.31-1.26 (m, 2H), 1.23-1.09 (m, 3H) ppm; 13C NMR (126 MHz, CDCl$_3$): $\delta = 171.0$, 161.2, 149.7, 144.2-144.0 (m), 142.2-142.0 (m), 141.1-141.0 (m), 139.1-138.8 (m), 137.0-136.8
(E)-5-chloro-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentyl acetate (4f):
Follow the typical process an isolated as yellow oil (108 mg, 84% yield); R\textsubscript{f} = 0.42 (petroleum ether-EtOAc = 5:1); 1H NMR (500 MHz, CDCl\textsubscript{3}); δ = 8.10 (s, 1H), 4.52 (p, J = 5.2 Hz, 1H), 4.33-4.26 (m, 2H), 3.62 (t, J = 5.6 Hz, 2H), 2.13 (s, 3H), 2.10 (s, 3H), 2.00-1.87 (m, 4H) ppm; 13C NMR (126 MHz, CDCl\textsubscript{3}); δ = 170.8, 161.0, 150.6, 144.2-144.1 (m), 142.2-142.0 (m), 141.2-141.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 111.5-111.3 (m), 82.1, 64.8, 44.5, 28.3, 28.0, 20.8, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 453.0611; found: 453.0611.

(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)propane-1,3-diyI diacetate (4g): Follow the typical process an isolated as yellow oil (112 mg, 88% yield); R\textsubscript{f} = 0.28 (petroleum ether-EtOAc = 5:1); 1H NMR (500 MHz, CDCl\textsubscript{3}); δ = 8.18 (s, 1H), 4.67 (p, J = 5.2 Hz, 1H), 4.35 (d, J = 5.2 Hz, 4H), 2.11 (s, 3H), 2.09 (s, 6H) ppm; 13C NMR (126 MHz, CDCl\textsubscript{3}); δ = 170.6 (2C), 160.9, 151.3, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 111.5-111.3 (m), 80.3, 62.2 (2C), 20.6 (2C), 10.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 449.0742; found: 449.0744.

(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-1-phenylethyl acetate (4h): Follow the typical process an isolated as yellowish oil (126 mg, 98% yield); R\textsubscript{f} = 0.51 (petroleum ether-EtOAc = 5:1); 1H NMR (500 MHz, CDCl\textsubscript{3}); δ = 8.07 (s, 1H), 7.43-7.32 (m, 5H), 6.17 (dd, J\textsubscript{1} = 7.8 Hz, J\textsubscript{2} = 4.1 Hz, 1H), 4.56 (dd, J\textsubscript{1} = 12.0 Hz, J\textsubscript{2} = 7.9 Hz, 1H), 4.47 (dd, J\textsubscript{1} = 11.9 Hz, J\textsubscript{2} = 4.1 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H) ppm; 13C NMR (126 MHz, CDCl\textsubscript{3}); δ = 170.0, 161.0, 150.6, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.0 (m), 138.9-138.7 (m), 136.9-136.8 (m), 136.6, 128.6, 128.6 (2C), 126.7 (2C), 111.6-111.4 (m), 77.5, 73.6, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]+ 453.0844; found: 453.0847.
(E)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-1-((p-tolyl)ethyl acetate (4i): Follow the typical process an isolated as yellow oil (123 mg, 92% yield); R_f = 0.22 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.03 (s, 1H), 7.31-7.26 (m, 2H), 7.22-7.18 (m, 2H), 6.13 (dd, J_1 = 8.0 Hz, J_2 = 4.0 Hz, 1H), 4.55 (dd, J_1 = 11.9 Hz, J_2 = 8.0 Hz, 1H), 4.45 (dd, J_1 = 11.9 Hz, J_2 = 4.1 Hz, 1H), 2.36 (d, J = 3.6 Hz, 3H), 2.13 (s, 3H), 2.09 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 170.1, 161.0, 150.5, 144.2-144.4 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.2-139.1 (m), 138.5, 136.9-136.8 (m), 133.6, 129.3, 129.3, 126.8, 126.7, 111.6-111.3 (m), 77.5, 73.5, 21.1, 21.1, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 467.1001; found: 467.1001.

(E)-1-(4-methoxyphenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4j): Follow the typical process an isolated as yellow oil (132 mg, 96% yield); R_f = 0.41 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.04 (s, 1H), 7.34-7.31 (m, 2H), 6.93-6.90 (m, 2H), 6.12 (dd, J_1 = 8.0 Hz, J_2 = 4.2 Hz, 1H), 4.55 (dd, J_1 = 11.9 Hz, J_2 = 8.0 Hz, 1H), 4.44 (dd, J_1 = 11.9 Hz, J_2 = 4.2 Hz, 1H), 3.81 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 170.1, 161.0, 159.9, 150.5, 144.2-144.1 (m), 142.2-142.1 (m), 141.2-141.1 (m), 139.2-139.0 (m), 137.0-136.8 (m), 128.6, 128.3 (2C), 114.1 (2C), 111.6-111.3 (m), 77.4, 73.2, 55.3, 21.1, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 483.0950; found: 483.0953.

(E)-1-(naphthalen-1-yl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4k): Follow the typical process an isolated as red soild (134 mg, 93% yield); R_f = 0.46 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.20 (d, J = 8.5 Hz, 1H), 7.98 (s, 1H), 7.88 (dd, J_1 = 17.8 Hz, J_2 = 8.1 Hz, 2H), 7.68-7.46 (m, 4H), 6.99 (dd, J_1 = 7.8 Hz, J_2 = 3.7 Hz, 1H), 4.71 (dd, J_1 = 12.2 Hz, J_2 = 7.8 Hz, 1H), 4.65 (dd, J_1 = 12.2 Hz, J_2 = 3.7 Hz, 1H), 2.21 (s, 3H), 2.09 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 170.0, 160.9, 150.7, 144.2-143.9 (m), 142.1-142.0 (m), 141.1-141.0 (m), 138.9-138.7 (m), 136.9-136.7 (m), 133.8, 132.4, 130.4, 129.1, 129.0, 126.7, 125.9, 125.3, 124.5, 122.7, 111.6-111.3 (m), 77.4, 71.0, 21.1, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 503.1001; found: 503.1010.
(E)-1-(4-fluorophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4l): Follow the typical process an isolated as yellow oil (132 mg, 98% yield); R_f = 0.25 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.07 (s, 1H), 7.39-7.36 (m, 2H), 7.10-7.05 (m, 2H), 6.13 (dd, J_1 = 7.8 Hz, J_2 = 4.2 Hz, 1H), 4.53 (dd, J_1 = 11.9 Hz, J_2 = 7.8 Hz, 1H), 4.44 (dd, J_1 = 11.9 Hz, J_2 = 4.2 Hz, 1H), 2.13 (s, 3H), 2.08 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 170.0, 162.8 (d, J = 247.6 Hz), 160.9, 150.8, 144.3-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 138.8-138.7 (m), 136.9-136.7 (m), 132.5 (d, J = 3.0 Hz), 128.6 (d, J = 8.2 Hz, 2C), 115.7 (d, J = 21.7 Hz, 2C), 111.6-111.3 (m), 77.3, 72.9, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 471.0750; found: 471.0754.

(E)-1-(4-chlorophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4m): Follow the typical process an isolated as yellow solid (135 mg, 97% yield); R_f = 0.27 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.02 (s, 1H), 7.38-7.31 (m, 4H), 6.12 (dd, J_1 = 7.6 Hz, J_2 = 4.2 Hz, 1H), 4.52 (dd, J_1 = 11.9 Hz, J_2 = 7.6 Hz, 1H), 4.44 (dd, J_1 = 11.9 Hz, J_2 = 4.2 Hz, 1H), 2.14 (s, 3H), 2.08 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 169.9, 160.8, 150.8, 144.2-144.0 (m), 142.2-142.0 (m), 141.2-141.0 (m), 138.9-138.7 (m), 136.9-136.6 (m), 135.2, 134.5, 128.8 (2C), 128.1 (2C), 111.5-111.3 (m), 77.1, 72.9, 20.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 487.0454; found: 487.0458.

(E)-1-(3-chlorophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4n): Follow the typical process an isolated as yellow oil (135 mg, 97% yield); R_f = 0.23 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.03 (s, 1H), 7.39 (s, 1H), 7.35-7.30 (m, 2H), 7.28-7.25 (m, 1H), 6.11 (dd, J_1 = 7.5 Hz, J_2 = 4.1 Hz, 1H), 4.53 (dd, J_1 = 12.0 Hz, J_2 = 7.6 Hz, 1H), 4.46 (dd, J_1 = 12.0 Hz, J_2 = 4.2 Hz, 1H), 2.16 (s, 3H), 2.09 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 169.9, 160.8, 150.9, 144.2-144.0 (m), 142.2-142.1 (m), 138.6, 136.9-136.7 (m), 134.7, 130.0, 128.8, 126.9, 124.9, 111.5-111.2 (m), 77.2, 72.9, 21.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 487.0454; found: 487.0458.
(E)-1-(4-bromophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4o): Follow the typical process an isolated as yellow oil (148 mg, 97% yield); R_f = 0.46 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.00 (s, 1H), 7.54-7.51 (m, 2H), 7.29-7.26 (m, 2H), 6.10 (dd, J_1 = 7.5 Hz, J_2 = 4.3 Hz, 1H), 4.52 (dd, J_1 = 11.9 Hz, J_2 = 7.5 Hz, 1H), 4.44 (dd, J_1 = 11.9 Hz, J_2 = 4.3 Hz, 1H), 2.14 (s, 3H), 2.08 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 169.9, 160.8, 150.8, 144.2-144.0 (m), 142.2-142.1 (m), 138.9-138.7 (m), 136.9-136.7 (m), 135.7, 131.9 (2C), 128.5 (2C), 122.6, 111.5-111.3 (m), 77.1, 72.9, 21.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 530.9949; found: 530.9954.

(E)-1-(2-bromophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4p): Follow the typical process an isolated as yellow oil (98 mg, 84% yield); R_f = 0.50 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.05 (s, 1H), 7.59 (dd, J_1 = 8.0 Hz, J_2 = 1.0 Hz, 1H), 7.46 (dd, J_1 = 7.8 Hz, J_2 = 1.6 Hz, 1H), 7.36 (td, J_1 = 7.5 Hz, J_2 = 1.0 Hz, 1H), 7.21 (td, J_1 = 7.8 Hz, J_2 = 1.7 Hz, 1H), 6.51 (dd, J_1 = 7.0 Hz, J_2 = 3.5 Hz, 1H), 4.57-4.47 (m, 2H), 2.17 (s, 3H), 2.09 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 169.6, 160.8, 150.5, 144.1-143.9 (m), 142.1-141.9 (m), 141.1-141.0 (m), 139.1-138.9 (m), 136.9-136.8 (m), 136.0, 133.0, 129.9, 128.0, 127.7, 122.3, 111.7-111.4 (m), 76.2, 73.0, 20.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 530.9949; found: 530.9954.

(E)-1-(2-iodophenyl)-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4q): Follow the typical process an isolated as yellow solid (100 mg, 60% yield); R_f = 0.50 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.10 (s, 1H), 7.90-7.84 (m, 1H), 7.44-7.37 (m, 2H), 7.06-7.02 (m, 1H), 6.36 (dd, J_1 = 7.3 Hz, J_2 = 3.5 Hz, 1H), 4.52-4.43 (m, 2H), 2.17 (s, 3H), 2.11 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 169.7, 160.8, 150.6, 144.1-143.9 (m), 142.1-141.9 (m), 141.1-141.0 (m), 139.7, 139.0, 138.9-138.8 (m), 137.0-136.8 (m), 130.2, 128.6, 127.7, 111.6-111.4 (m), 97.5, 77.3, 76.4, 21.0, 10.0 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 578.9811; found: 578.9814.
Methyl(E)-3-acetoxy-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-3-phenylpropanoate (4r): Follow the typical process an isolated as white solid (138 mg, 96% yield); R_f = 0.29 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 7.85 (s, 1H), 7.42-7.34 (m, 5H), 6.36 (d, J = 5.4 Hz, 1H), 5.07 (d, J = 5.4 Hz, 1H), 3.70 (s, 3H), 2.18 (s, 3H), 2.16 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 169.6, 168.2, 160.5, 152.1, 144.1-144.0 (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.1-139.0 (m), 136.9-136.7 (m), 135.3, 129.0, 128.6 (2C), 127.1 (2C), 111.3-111.1 (m), 85.1, 73.9, 52.5, 20.9, 10.3 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 511.0899; found: 511.0906.

(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-3-phenylpropan-2-yl acetate (4s): Follow the typical process an isolated as white solid (109 mg, 82% yield); R_f = 0.31 (petroleum ether-EtOAc = 10:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.09 (s, 1H), 7.33 (t, J = 7.3 Hz, 2H), 7.26-7.23 (m, 3H), 5.41 (qd, J_1 = 6.8 Hz, J_2 = 3.7 Hz, 1H), 4.37 (dd, J_1 = 11.8 Hz, J_2 = 3.7 Hz, 1H), 3.02-2.92 (m, 2H), 2.12 (s, 3H), 2.06 (s, 3H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 170.3, 161.0, 150.5, 144.2-144.1 (m), 142.2-141.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 137.0-136.8 (m), 136.3, 129.4 (2C), 128.6 (2C), 126.9, 111.7-111.3 (m), 75.7, 72.5, 37.2, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 467.1001; found: 467.1001.

(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)-4-phenylbutan-2-yl acetate (4t): Follow the typical process an isolated as yellow oil (96 mg, 70% yield); R_f = 0.53 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): δ = 8.09 (s, 1H), 7.31 (t, J = 7.5 Hz, 2H), 2.81-2.64 (m, 2H), 2.10 (d, J = 5.7 Hz, 6H), 2.06-1.91 (m, 2H) ppm; ^13C NMR (126 MHz, CDCl_3): δ = 170.6, 161.0, 150.4, 144.2-144.0 (m), 142.3-141.0 (m), 141.3-141.1 (m), 140.9, 139.0-138.8 (m), 137.0-136.8 (m), 128.5 (2C), 128.3 (2C), 126.2, 111.7-111.4 (m), 76.5, 71.4, 32.4, 31.5, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 481.1157; found: 481.1159.
(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)pentan-2-yl acetate (4u):
Follow the typical process an isolated as colourless oil (77 mg, 65% yield); \(R_f = 0.20 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.14 \) (s, 1H), 5.27-5.21 (m, 1H), 4.32 (qd, \(J_1 = 11.8 \) Hz, \(J_2 = 5.2 \) Hz, 2H), 2.10 (s, 3H), 2.08 (s, 3H), 1.65-1.58 (m, 2H), 1.46-1.35 (m, 2H), 0.96 (t, \(J = 7.4 \) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 170.7, 161.1, 150.4, 144.2-144.1 \) (m), 142.2-141.0 (m), 141.2-141.0 (m), 139.1-139.0 (m), 137.2-137.0 (m), 111.7-111.6 (m), 76.7, 71.7, 32.9, 21.0, 18.5, 13.9, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ \text{419.1001; found: 419.1004.}

(E)-1-cyclohexyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)ethyl acetate (4v):
Follow the typical process an isolated as colourless oil (60 mg, 46% yield); \(R_f = 0.42 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.13 \) (s, 1H), 5.07 (td, \(J_1 = 6.9 \) Hz, \(J_2 = 3.3 \) Hz, 1H), 4.42 (dd, \(J_1 = 11.8 \) Hz, \(J_2 = 3.3 \) Hz, 1H), 4.34 (dd, \(J_1 = 11.8 \) Hz, \(J_2 = 7.0 \) Hz, 1H), 2.09 (s, 6H), 1.80-1.63 (m, 5H), 1.29-1.06 (m, 6H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 170.7, 161.1, 150.3, 144.2-143.9 \) (m), 142.2-141.0 (m), 141.2-141.0 (m), 138.9-138.8 (m), 136.9-136.7 (m), 111.6-111.4 (m), 75.4, 75.3, 38.9, 29.0, 28.3, 26.2, 25.9, 25.8, 21.0, 9.9 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ \text{459.1314; found: 459.1317.}

(E)-3-isopropyl-6-methyl-2-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)cyclohexyl acetate (4w):
Follow the typical process an isolated as yellow solid (71 mg, 51% yield); \(R_f = 0.32 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.45 \) (s, 1H), 5.12-5.05 (m, 1H), 4.71-4.68 (m, 1H), 2.21-2.13 (m, 1H), 2.09 (s, 3H), 2.03 (s, 3H), 2.02-1.95 (m, 1H), 1.83-1.76 (m, 1H), 1.68-1.60 (m, 2H), 1.57-1.47 (m, 2H), 1.19 (d, \(J = 6.3 \) Hz, 3H), 0.96 (d, \(J = 6.1 \) Hz, 3H), 0.92 (d, \(J = 6.3 \) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 171.7, 162.0, 150.6, 144.3-144.2 \) (m), 142.4-142.2 (m), 141.1-141.0 (m), 139.1-138.9 (m), 136.9-136.8 (m), 112.0-111.8 (m), 86.2, 70.6,
(E)-1-(((1-oxo-1-((perfluorophenyl)amino)propan-2-ylidene)amino)oxy)butan-2-yl acetate (4x):
Follow the typical process an isolated as yellowish oil (95 mg, 83% yield); \(R_f = 0.20 \) (petroleum ether-EtOAc = 10:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 8.11 \) (s, 1H), 5.18-5.13 (m, 1H), 4.38-4.29 (m, 2H), 2.10 (d, \(J = 5.2\) Hz, 6H), 1.74-1.61 (m, 2H), 0.99 (t, \(J = 7.5\) Hz, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 170.7, 161.0, 150.4, 144.2-144.0\) (m), 142.2-142.0 (m), 141.3-141.1 (m), 138.9-138.7 (m), 137.0-136.7 (m), 137.1-136.8 (m), 111.6-111.4 (m), 76.3, 73.0, 23.9, 21.0, 9.9, 9.5 ppm; HRMS (ESI-TOF): calcld. [M+Na]\(^+\) 405.0844; found: 405.0844.

1-(1,1'-biphenyl)-4-yl)pentan-2-ol (5):
White solid; \(R_f = 0.49 \) (petroleum ether-EtOAc = 5:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.63-7.56 \) (m, 4H), 7.48-7.44 (m, 2H), 7.38-7.30 (m, 3H), 3.90 (s, 1H), 2.90 (dd, \(J = 13.6\) Hz, \(J_2 = 4.2\) Hz, 1H), 2.72 (dd, \(J_1 = 13.6\) Hz, \(J_2 = 8.4\) Hz, 1H), 1.65-1.51 (m, 4H), 1.49-1.39 (m, 1H), 1.02-0.95 (m, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 140.9, 139.4, 137.8, 129.8\) (2C), 128.8 (2C), 127.3 (2C), 127.1 (2C), 127.0, 72.4, 43.7, 39.1, 19.0, 14.1 ppm; HRMS (ESI-TOF): calcld. [M+Na]\(^+\) 263.1406; found: 263.1409.

1-(4-chlorophenyl)-2-hydroxyethyl acetate (6):
White solid; \(R_f = 0.20 \) (petroleum ether-EtOAc = 5:1); \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 7.37-7.32 \) (m, 4H), 4.95 (dd, \(J = 8.3\) Hz, \(J_2 = 3.3\) Hz, 1H), 4.27 (dd, \(J_1 = 11.6\) Hz, \(J_2 = 3.3\) Hz, 1H), 4.13 (dd, \(J_1 = 11.6\) Hz, \(J_2 = 8.3\) Hz, 1H), 2.12 (s, 3H) ppm; \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta = 171.2, 138.2, 134.0, 128.8\) (2C), 127.5 (2C), 71.8, 69.1, 20.9 ppm; HRMS (ESI-TOF): calcld. [M+Na]\(^+\) 273.0289; found: 273.0289.
(S,E)-2-((2-hydroxy-2-(p-toly)ethoxy)imino)-N-(perfluorophenyl)propanamide (7): Colourless oil; R_f = 0.20 (petroleum ether-EtOAc = 5:1); ^1H NMR (500 MHz, CDCl_3): \(\delta = 8.03 \) (s, 1H), 7.31 (d, \(J = 8.0 \) Hz, 2H), 7.21 (d, \(J = 7.9 \) Hz, 2H), 5.06 (t, \(J = 5.5 \) Hz, 1H), 4.41 (d, \(J = 5.9 \) Hz, 2H), 2.36 (s, 3H), 2.15 (s, 3H), 1.65 (s, 1H) ppm; ^13C NMR (126 MHz, CDCl_3): \(\delta = 161.0, 150.6, 144.2-144.1 \) (m), 142.2-142.0 (m), 141.2-141.1 (m), 139.0-138.8 (m), 138.1, 137.1-137.0 (m), 136.9, 129.3 (2C), 126.2 (2C), 111.5-111.3 (m), 80.5, 72.6, 21.1, 10.1 ppm; HRMS (ESI-TOF): calcd. [M+Na]^+ 425.0895; found: 425.0895.

XI. NMR Spectra