Supporting information for

Direct Oxidative Dearomatization of Indoles: Access to Structurally Diverse 2,2-Disubstituted Indolin-3-ones

Xigong Liu, Xue Yan, Yingde Tang, Cheng-Shi Jiang, Jin-Hai Yu, Kaiming Wang, and Hua Zhang*

*School of Biological Science and Technology, University of Jinan, Jinan 250022, P. R China
Table of Contents

General information..S3

General procedures..S3

The analytical and spectral characterization data of the products............................S4

Mechanism studies...S23

1H and 13C NMR spectra data...S25
General information

EtOAc was freshly distilled over CaSO₄ and THF was freshly distilled over Na. CH₂Cl₂ and CH₃CN were freshly distilled over CaH₂. Other reagents and solvents were used as commercially available products without further purification unless specified. Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded at on an Bruker AVANCE DRX600 NMR spectrometer. The chemical shifts were given in parts per million (ppm) on the delta (δ) scale, and the residuel solvent peaks were used as references as follows: CDCl₃ δH 7.26, δC 77.16 ppm; acetone-d₆ δH 2.05, δC 29.84 ppm. Analytical TLC was performed on precoated silica gel GF254 plates. Column chromatography was carried out on silica gel (200–300 mesh). ESIMS analyses were performed on an Agilent 1260-6460 Triple Quad LC-MS spectrometer. HR-ESIMS were carried out on an Agilent 6520 Q-TOF MS spectrometer.

General procedures for synthesis of starting materials.

The C2 substituted indoles were synthesized according to the protocols in previous reports.¹⁻³

General procedures for synthesis of TEMPO oxoammonium salts⁴

TEMPO (10 g, 64 mmol) was dissolved in water (16.4 mL) and the corresponding acid (64 mmol) was slowly added dropwise over 1 h at room temperature. Then NaOCl (23 mL, 32 mmol) was added over 1 h at 0 °C and stirred for an additional 1 h at 0 °C. The reaction mixture was filtered and the yellow crystalline precipitate was washed with ice-cold 5% NaHCO₃ (20 mL), water (40 mL), and ice-cold Et₂O (400 mL). The solid was dried over 24 h at 50 °C in vacuo to afford the desired product.

General procedures for oxidative dearomative difunctionalization of indoles

General procedure: To a solution of 1 (0.1 mmol) and 2 (0.15 mmol) in EtOAc was added TEMPO⁺ClO₄⁻ (0.105 mmol) at room temperature. After 6 h, the solvent was removed and the residue was purified by flash chromatography using acetone-petroleum ether as eluent to afford the desired product.
The analytical and spectral characterization data of the products

2-Phenyl-2-(phenylethynyl)indolin-3-one (3a)

According to general procedure, 3a was obtained in 93% yield (28.7 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.69 (m, 2H), 7.69-7.65 (m, 1H), 7.58-7.53 (m, 1H), 7.50 (d, J = 7.2 Hz, 2H), 7.43-7.29 (m, 6H), 7.02 (d, J = 7.6 Hz, 1H), 6.98-6.89 (m, 1H), 5.31 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 196.3, 160.6, 138.0, 137.9, 132.1, 128.9, 128.9, 128.6, 128.4, 126.4, 126.2, 122.1, 120.4, 118.1, 112.8, 86.4, 84.3, 67.1; HR-ESIMS m/z calcd for C$_{22}$H$_{16}$NO [M+H]$^+$ 310.1226, found 310.1225.

2-((4-Methoxyphenyl)ethynyl)-2-phenylindolin-3-one (3b)

According to general procedure, 3b was obtained in 94% yield (31.9 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.67 (m, 2H), 7.66 (d, J = 7.2 Hz, 1H), 7.57-7.51 (m, 1H), 7.46-7.31 (m, 5H), 7.00 (d, J = 8.5 Hz, 1H), 6.96-6.90 (m, 1H), 6.83 (d, J = 8.1 Hz, 2H), 5.31 (s, 1H), 3.81 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.5, 160.7, 160.0, 138.1, 137.9, 133.6, 128.8, 128.5, 126.2, 120.3, 118.2, 114.2, 114.0, 112.8, 85.0, 84.3, 67.2, 55.4; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO$_2$ [M+H]$^+$ 340.1332, found 340.1336.

2-Phenyl-2-(p-tolylethynyl)indolin-3-one (3c)

According to general procedure, 3c was obtained in 88% yield (28.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.68 (m, 2H), 7.66 (dd, J = 7.8, 1.2 Hz, 1H), 7.55 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.42-7.32 (m, 5H), 7.12 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.2 Hz, 1H), 6.93 (t, J = 7.4 Hz, 1H), 5.30 (s, 1H), 2.35 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.4, 160.7, 139.1, 138.0, 137.9, 132.0, 129.2, 128.8, 128.6, 126.4, 126.2, 120.4, 119.0, 118.2, 112.8, 85.7, 84.5, 67.2, 21.6; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO [M+H]$^+$ 324.1383, found 324.1381.
2-Phenyl-2-(\textit{m}-tolylethynyl)indolin-3-one (3d)

According to general procedure, 3d was obtained in 90% yield (28.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.74-7.69 (m, 2H), 7.67 (dd, $J = 7.8$, 1.3 Hz, 1H), 7.55 (ddd, $J = 8.4$, 7.1, 1.3 Hz, 1H), 7.42-7.32 (m, 4H), 7.30 (brd, $J = 7.6$ Hz, 1H), 7.20 (t, $J = 7.6$ Hz, 1H), 7.15 (brd, $J = 7.6$ Hz, 1H), 7.01 (d, $J = 8.2$ Hz, 1H), 6.95-6.91 (m, 1H), 5.31 (s, 1H), 2.32 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.3, 160.6, 138.1, 137.9, 137.9, 132.7, 129.7, 129.1, 128.8, 128.5, 128.3, 128.2, 127.1, 120.3, 118.1, 112.8, 86.0, 84.4, 67.1, 21.3; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO $[\text{M+H}]^+$ 324.1383, found 324.1384.

2-((4-Fluorophenyl)ethynyl)-2-phenylindolin-3-one (3e)

According to general procedure, 3e was obtained in 91% yield (29.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.72-7.61 (m, 3H), 7.60-7.52 (m, 1H), 7.50-7.44 (m, 2H), 7.42-7.32 (m, 3H), 7.04-6.97 (m, 3H), 6.97-6.90 (m, 1H), 5.32 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 196.2, 163.7, 162.0, 160.6, 138.1, 137.8, 134.1, 134.1, 128.9, 128.6, 126.4, 126.1, 120.4, 118.2, 118.2, 118.1, 115.8, 115.7, 112.8, 86.2, 83.2, 67.1; HR-ESIMS m/z calcd for C$_{22}$H$_{15}$FNO $[\text{M+H}]^+$ 328.1132, found 328.1333.

2-((2-Fluorophenyl)ethynyl)-2-phenylindolin-3-one (3f)

According to general procedure, 3f was obtained in 92% yield (30.0 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.69 (m, 2H), 7.66 (dd, $J = 8.3$, 2.6 Hz, 1H), 7.56 (t, $J = 8.2$ Hz, 1H), 7.50-7.45 (m, 1H), 7.42-7.30 (m, 4H), 7.11-7.05 (m, 2H), 7.02 (dd, $J = 8.6$, 2.7 Hz, 1H), 6.96-6.91 (m, 1H), 5.36 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 196.0, 164.0, 162.4, 160.6, 138.0, 137.6, 133.9, 130.7, 130.6, 128.9, 128.6, 126.4, 126.2, 124.0, 120.4, 118.0, 115.7, 115.5, 112.8, 110.8, 110.7, 91.5, 91.5, 77.9, 67.2; HR-ESIMS m/z calcd for C$_{22}$H$_{15}$FNO $[\text{M+H}]^+$ 328.1132, found 328.1335.

2-((4-Chlorophenyl)ethynyl)-2-phenylindolin-3-one (3g)

According to general procedure, 3g was obtained in 90% yield (30.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.70-7.64 (m, 2H), 7.66 (dd, $J = 8.3$, 2.6 Hz, 1H), 7.56 (t, $J = 8.2$ Hz, 1H), 7.50-7.45 (m, 1H), 7.42-7.30 (m, 4H), 7.11-7.05 (m, 2H), 7.02 (dd, $J = 8.6$, 2.7 Hz, 1H), 6.96-6.91 (m, 1H), 5.36 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 196.0, 164.0, 162.4, 160.6, 138.0, 137.6, 133.9, 130.7, 130.6, 128.9, 128.6, 126.4, 126.2, 124.0, 120.4, 118.0, 115.7, 115.5, 112.8, 110.8, 110.7, 91.5, 91.5, 77.9, 67.2; HR-ESIMS m/z calcd for C$_{22}$H$_{15}$FNO $[\text{M+H}]^+$ 328.1132, found 328.1335.
7.56 (ddd, \(J = 8.4, 7.1, 1.3 \) Hz, 1H), 7.44-7.34 (m, 5H), 7.31-7.27 (m, 2H), 7.02 (d, \(J = 8.2 \) Hz, 1H), 6.94 (t, \(J = 7.4 \) Hz, 1H), 5.31 (s, 1H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) 196.1, 160.6, 138.1, 137.7, 135.0, 133.4, 128.9, 128.8, 128.7, 126.5, 126.1, 120.6, 120.5, 118.1, 112.8, 87.4, 83.2, 67.1; HR-ESIMS \(m/z \) calcd for C\(_{22}\)H\(_{15}\)ClNO [M+H]+ 344.0837, found 344.0835.

2-(Oct-1-yn-1-yl)-2-phenylindolin-3-one (3h)

According to general procedure, 3h was obtained in 87% yield (27.6 mg). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 7.62 (d, \(J = 7.8 \) Hz, 3H), 7.53 (t, \(J = 8.2 \) Hz, 1H), 7.38-7.28 (m, 3H), 6.97 (d, \(J = 8.2 \) Hz, 1H), 6.91 (t, \(J = 7.4 \) Hz, 1H), 5.15 (s, 1H), 2.27 (td, \(J = 7.2, 2.1 \) Hz, 2H), 1.55 (p, \(J = 7.3 \) Hz, 2H), 1.43-1.35 (m, 2H), 1.34-1.26 (m, 4H), 0.89 (t, \(J = 6.9 \) Hz, 3H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) 197.0, 160.7, 138.3, 137.8, 128.7, 128.4, 126.3, 126.2, 120.2, 118.2, 112.8, 85.6, 77.3, 66.9, 31.4, 28.7, 28.6, 22.6, 19.0, 14.2; HR-ESIMS \(m/z \) calcd for C\(_{22}\)H\(_{24}\)NO [M+H]+ 318.1852, found 318.1854.

2-(4-(Benzyloxy)but-1-yn-1-yl)-2-phenylindolin-3-one (3i)

According to general procedure, 3i was obtained in 86% yield (31.5 mg). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 7.63-7.57 (m, 3H), 7.51 (t, \(J = 7.0 \) Hz, 1H), 7.35-7.25 (m, 8H), 6.94 (d, \(J = 5.9 \) Hz, 1H), 6.89 (t, \(J = 6.5 \) Hz, 1H), 5.16 (s,1H), 4.53 (s, 2H), 3.61 (t, \(J = 6.6 \) Hz, 2H), 2.59 (t, \(J = 6.6 \) Hz, 2H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) 196.7, 160.6, 138.0, 137.9, 137.8, 128.7, 128.5, 128.4, 127.7, 127.7, 126.2, 126.1, 120.2, 118.0, 112.7, 81.9, 78.4, 73.0, 68.2, 66.7, 20.4; HR-ESIMS \(m/z \) calcd for C\(_{25}\)H\(_{22}\)NO\(_2\) [M+H]+ 368.1645, found 368.1644.

2-Phenyl-2-(((trimethylsilyl)ethynyl)indolin-3-one (3j)

According to general procedure, 3j was obtained in 84% yield (25.6 mg). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 7.66-7.60 (m, 3H), 7.55 (t, \(J = 7.0 \) Hz, 1H), 7.42-7.30 (m, 3H), 7.00 (brd, \(J = 7.9 \) Hz, 1H), 6.93 (t, \(J = 7.2 \) Hz, 1H), 5.18 (s, 1H), 0.22 (s, 9H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta \) 195.8, 160.4,
137.7, 137.6, 128.6, 126.4, 125.9, 120.2, 117.9, 112.7, 101.8, 89.5, 67.1, −0.2; HR-ESIMS m/z calcd for C_{19}H_{20}NOSi [M+H]^+ 306.1309, found 306.1312.

(E)-2-Phenyl-2-styrylindolin-3-one (3k)

According to general procedure, 3k was obtained in 92% yield (28.6 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.68-7.64 (m, 1H), 7.56-7.49 (m, 3H), 7.43-7.23 (m, 8H), 6.99 (d, J = 8.2 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 15.9 Hz, 1H), 6.64 (d, J = 15.9 Hz, 1H), 5.16 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 200.2, 160.2, 139.7, 137.7, 136.3, 130.5, 128.9, 128.7, 128.5, 128.2, 128.1, 126.8, 126.6, 125.7, 119.7, 119.5, 112.5, 73.4; HR-ESIMS m/z calcd for C$_{22}$H$_{18}$NO [M+H]$^+$ 312.1383, found 312.1386.

(E)-2-(Oct-1-en-1-yl)-2-phenylindolin-3-one (3l)

According to general procedure, 3l was obtained in 86% yield (27.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.63-7.57 (m, 1H), 7.50-7.45 (m, 3H), 7.36-7.24 (m, 3H), 6.93 (d, J = 8.1 Hz, 1H), 6.84 (t, J = 7.1 Hz, 1H), 5.97-5.77 (m, 2H), 4.99 (s, 1H), 2.10-2.05 (m, 2H), 1.42-1.16 (m, 8H), 0.86 (t, J = 6.0 Hz, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 200.6, 160.2, 140.0, 137.5, 132.3, 128.8, 128.6, 127.9, 126.5, 125.7, 119.5, 119.4, 112.4, 73.1, 32.5, 31.8, 29.1, 29.0, 22.7, 14.2; HR-ESIMS m/z calcd for C$_{22}$H$_{26}$NO [M+H]$^+$ 320.2009, found 320.2013.

2-Allyl-2-phenylindolin-3-one (3m)

According to general procedure, 3m was obtained in 86% yield (21.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.65-7.61 (m, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.49 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 2H), 7.31-7.26 (m, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.84 (t, J = 7.4 Hz, 1H), 5.63-5.56 (m, 1H), 5.17 (dd, J = 17.1, 1.6 Hz, 1H), 5.13 (s, 1H), 5.11-5.06 (m, 1H), 3.06 (dd, J = 14.0, 5.9 Hz, 1H), 2.65 (dd, J = 14.0, 8.4 Hz, 1Hz); 13C NMR (151 MHz, CDCl$_3$) δ 201.3, 160.4, 138.6, 137.5, 132.7, 128.7, 127.8, 126.0, 125.5, 119.9, 119.6, 119.4, 112.4, 70.8, 42.9; HR-ESIMS m/z calcd for C$_{17}$H$_{16}$NO [M+H]$^+$ 250.1226, found 250.1230.
2-(4-Methoxyphenyl)-2-phenylindolin-3-one (3n)

According to general procedure with 1.2 eq oxidant, 3n was obtained in 85% yield (26.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.65 (d, $J = 7.8$ Hz, 1H), 7.49 (t, $J = 7.6$ Hz, 1H), 7.43-7.40 (m, 2H), 7.36-7.27 (m, 5H), 6.92 (d, $J = 8.2$ Hz, 1H), 6.89-6.83 (m, 3H), 5.26 (s, 1H), 3.78 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 201.2, 160.2, 159.3, 141.4, 137.7, 133.3, 128.7, 128.6, 127.9, 127.5, 125.6, 120.0, 119.7, 114.0, 112.6, 74.7, 55.4; HR-ESIMS m/z calcd for C$_{21}$H$_{18}$NO$_2$ [M+H]$^+$ 316.1332, found 316.1334.

2-Phenyl-2-(p-tolyl)indolin-3-one (3o)

According to general procedure with 1.2 eq oxidant for 12 h, 3o was obtained in 72% yield (21.5 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.66 (dd, $J = 7.8$, 1.3 Hz, 1H), 7.50 (dd, $J = 8.3$, 7.0, 1.3 Hz, 1H), 7.44-7.39 (m, 2H), 7.35-7.27 (m, 5H), 7.14 (d, $J = 8.0$ Hz, 2H), 6.93 (d, $J = 8.2$ Hz, 1H), 6.88 (t, $J = 7.4$ Hz, 1H), 5.19 (s, 1H), 2.34 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 200.9, 160.0, 141.1, 138.2, 137.6, 137.5, 129.3, 128.5, 127.8, 127.4, 127.3, 125.5, 120.0, 119.6, 112.5, 74.8, 21.1; HR-ESIMS m/z calcd for C$_{21}$H$_{18}$NO [M+H]$^+$ 300.1383, found 300.1382.

2-(3,4-Dimethoxyphenyl)-2-phenylindolin-3-one (3p)

According to general procedure with 1.2 eq oxidant, 3p was obtained in 82% yield (28.3 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.65 (d, $J = 7.6$ Hz, 1H), 7.49 (t, $J = 7.5$ Hz, 1H), 7.40-7.36 (m, 2H), 7.34-7.27 (m, 3H), 6.99 (d, $J = 8.3$ Hz, 1H), 6.97-6.91 (m, 2H), 6.87 (t, $J = 7.1$ Hz, 1H), 6.80 (d, $J = 8.2$ Hz, 1H), 5.25 (s, 1H), 3.85 (s, 3H), 3.78 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 201.2, 160.2, 149.0, 148.9, 141.5, 137.7, 133.4, 128.7, 128.0, 127.4, 125.6, 120.1, 119.8, 119.8, 112.6, 111.0, 110.9, 74.8, 56.0, 56.0; HR-ESIMS m/z calcd for C$_{22}$H$_{20}$NO$_3$ [M+H]$^+$ 346.1438, found 346.1439.

2-Phenyl-2-(thiophen-2-yl)indolin-3-one (3s)

According to general procedure, 3s was obtained in 71% yield (20.7 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.67 (d, $J = 7.7$ Hz, 1H), 7.57-7.44
(m, 3H), 7.37-7.29 (m, 3H), 7.25 (d, J = 5.2 Hz, 1H), 7.12 (dd, J = 3.7, 1.2 Hz, 1H),
7.00 (dd, J = 5.1, 3.6 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.91 (t, J = 7.4 Hz, 1H), 5.35
(s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 199.4, 160.0, 144.6, 140.5, 137.9, 128.7, 128.4,
127.3, 126.9, 126.4, 125.9, 125.4, 120.2, 119.4, 112.8, 72.4; HR-ESIMS m/z calcd for
C$_{18}$H$_{14}$NOS [M+H]$^+$ 292.0791, found 292.0795.

4-Fluoro-2-phenyl-2-(phenylethynyl)indolin-3-one (4a)

According to general procedure, 4a was obtained in 86% yield (28.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.67 (m, 2H),
7.52-7.47 (m, 3H), 7.43-7.28 (m, 6H), 6.76 (d, J = 8.2 Hz, 1H),
6.52 (t, J = 8.5 Hz, 1H), 5.46 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 192.2, 161.3, 139.7, 139.7, 137.4, 132.2, 129.0,
128.9, 128.8, 128.4, 126.2, 122.0, 108.3, 108.3, 106.3, 106.2, 85.9, 84.7, 67.5; HR-ESIMS m/z calcd for
C$_{22}$H$_{15}$FNO [M+H]$^+$ 328.1132, found 328.1133.

5-Chloro-2-phenyl-2-(phenylethynyl)indolin-3-one (4b)

According to general procedure, 4b was obtained in 90% yield (30.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.70-7.64 (m, 2H),
7.61 (s, 1H), 7.51-7.47 (m, 3H), 7.41-7.31 (m, 6H), 6.97 (d, J = 8.5 Hz, 1H), 5.34 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 195.1, 158.9, 137.9, 137.3, 132.1, 129.0, 128.9, 128.8, 128.4, 126.1, 125.6,
121.9, 119.2, 114.0, 85.8, 84.7, 67.8; HR-ESIMS m/z calcd for C$_{22}$H$_{15}$ClNO [M+H]$^+$ 344.0837, found 344.0841.

5-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4c)

According to general procedure, 4c was obtained in 95% yield (30.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.67 (m, 2H),
7.51-7.44 (m, 3H), 7.42-7.29 (m, 7H), 6.95 (d, J = 8.2 Hz, 1H),
5.16 (s, 1H), 2.33 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ
196.4, 159.1, 139.4, 138.1, 132.1, 130.1, 128.8, 128.8, 128.5, 128.4, 126.2, 125.7,
122.2, 118.4, 112.9, 86.6, 84.2, 67.5, 20.7; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO [M+H]$^+$
324.1383, found 324.1388.
5-Methoxy-2-phenyl-2-(phenylethynyl)indolin-3-one (4d)

According to general procedure, 4d was obtained in 94% yield (31.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.74-7.68 (m, 2H), 7.49 (d, $J = 6.9$ Hz, 2H), 7.44-7.28 (m, 6H), 7.24 (d, $J = 8.9$ Hz, 1H), 7.09 (s, 1H), 6.99 (d, $J = 9.0$ Hz, 1H), 5.09 (s, 1H), 3.79 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.7, 156.4, 154.4, 138.0, 132.1, 128.8, 128.8, 128.5, 128.4, 126.2, 122.1, 118.6, 114.6, 105.9, 86.6, 84.2, 68.0, 55.9; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO $[M+H]^+$ 340.1332, found 340.1333.

6-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4e)

According to general procedure, 4e was obtained in 91% yield (29.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.72-7.66 (m, 2H), 7.55 (d, $J = 7.8$ Hz, 1H), 7.49 (d, $J = 6.6$ Hz, 2H), 7.42-7.28 (m, 6H), 6.82 (s, 1H), 6.76 (d, $J = 7.8$ Hz, 1H), 5.23 (s, 1H), 2.42 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 195.6, 161.2, 149.8, 138.1, 132.1, 128.8, 128.5, 128.4, 126.2, 126.1, 122.2, 122.2, 115.9, 112.9, 86.6, 84.3, 67.4, 22.7; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO $[M+H]^+$ 324.1383, found 324.1386.

7-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4f)

According to general procedure, 4f was obtained in 90% yield (29.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.73-7.67 (m, 2H), 7.54 (brd, $J = 7.6$ Hz, 1H), 7.50 (brd, $J = 7.4$ Hz, 2H), 7.43-7.29 (m, 7H), 6.89 (t, $J = 7.2$ Hz, 1H), 5.13 (s, 1H), 2.34 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.7, 159.8, 138.0, 138.0, 132.1, 128.9, 128.8, 128.4, 126.2, 123.7, 122.2, 122.0, 120.5, 117.7, 86.6, 84.3, 67.2, 15.9; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO $[M+H]^+$ 324.1383, found 324.1385.

2-(4-Fluorophenyl)-2-(phenylethynyl)indolin-3-one (4g)

According to general procedure, 4g was obtained in 92% yield (30.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.72-7.64 (m, 3H), 7.56 (t, $J = 7.5$ Hz, 1H), 7.48 (d, $J = 7.1$ Hz, 2H), 7.36-7.30 (m, 3H), 7.07 (t, $J = 8.1$ Hz, 2H), 7.02 (d, $J = 8.1$ Hz, 1H), 6.95 (t, $J = 7.2$ Hz, 1H).
Hz, 1H), 5.31 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 196.1, 163.8, 162.2, 160.6, 138.1, 133.7, 133.7, 132.1, 129.0, 128.4, 128.2, 128.1, 126.5, 121.9, 120.6, 118.0, 115.8, 115.6, 113.0, 86.2, 84.3, 66.6; HR-ESIMS m/z calcd for C$_{22}$H$_{15}$FNO [M+H]$^+$ 328.1132, found 328.1130.

2-(Phenylethynyl)-2-(4-(trifluoromethoxy)phenyl)indolin-3-one (4h)

According to general procedure, 4h was obtained in 90% yield (35.3 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.75 (d, $J = 8.0$ Hz, 2H), 7.67 (d, $J = 7.6$ Hz, 1H), 7.57 (t, $J = 7.4$ Hz, 1H), 7.48 (d, $J = 7.0$ Hz, 2H), 7.36-7.30 (m, 3H), 7.23 (d, $J = 8.0$ Hz, 2H), 7.04 (d, $J = 8.1$ Hz, 1H), 6.96 (t, $J = 7.2$ Hz, 1H), 5.33 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 195.8, 160.6, 149.4, 138.3, 136.6, 132.1, 129.1, 128.4, 127.9, 126.4, 121.8, 121.3, 121.2, 120.7, 119.6, 117.9, 113.0, 86.0, 84.4, 66.5; HR-ESIMS m/z calcd for C$_{23}$H$_{15}$F$_3$NO [M+H]$^+$ 394.1049, found 394.1051.

2-(Phenylethynyl)-2-(p-tolyl)indolin-3-one (4i)

According to general procedure, 4i was obtained in 93% yield (30.0 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.63 (d, $J = 7.7$ Hz, 1H), 7.55 (d, $J = 7.8$ Hz, 2H), 7.51 (t, $J = 7.5$ Hz, 1H), 7.46 (d, $J = 6.8$ Hz, 2H), 7.34-7.25 (m, 3H), 7.17 (d, $J = 7.7$ Hz, 2H), 6.97 (d, $J = 8.2$ Hz, 1H), 6.89 (t, $J = 7.3$ Hz, 1H), 5.28 (s, 1H), 2.33 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.5, 160.6, 149.4, 138.3, 136.4, 132.1, 129.1, 128.4, 127.9, 126.4, 121.8, 121.3, 121.2, 120.7, 119.6, 117.9, 113.0, 86.0, 84.4, 66.5; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO [M+H]$^+$ 324.1383, found 324.1384.

2-(3-Methoxyphenyl)-2-(phenylethynyl)indolin-3-one (4j)

According to general procedure, 4j was obtained in 95% yield (32.2 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.63 (d, $J = 7.6$ Hz, 1H), 7.51 (t, $J = 7.5$ Hz, 1H), 7.46 (d, $J = 6.8$ Hz, 2H), 7.34-7.25 (m, 6H), 6.97 (d, $J = 7.2$ Hz, 1H), 6.93-6.84 (m, 2H), 5.30 (s, 1H), 3.79 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.1, 160.6, 156.0, 139.4, 138.0, 132.1,
129.9, 128.9, 128.4, 126.4, 122.1, 120.4, 118.4, 118.1, 113.8, 112.8, 112.2, 86.3, 84.2, 67.0, 55.4; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO$_2$ [M+H]$^+$ 340.1332, found 340.1335.

2-(Phenylethynyl)-2-(o-tolyl)indolin-3-one (4k)

According to general procedure, 4k was obtained in 94% yield (30.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 8.03 (d, J = 6.6 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.47-7.43 (m, 2H), 7.35-7.22 (m, 5H), 7.17-7.01 (m, 1H), 6.97-6.94 (m, 2H), 5.17 (s, 1H), 2.17 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 196.8, 159.6, 137.7, 137.2, 135.1, 132.1, 132.1, 129.7, 128.9, 128.9, 128.4, 126.0, 125.7, 122.1, 120.4, 120.0, 113.3, 86.67, 84.7, 68.6, 20.4; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO $[M+H]^+$ 324.1383, found 324.1386.

2-(2-Methoxyphenyl)-2-(phenylethynyl)indolin-3-one (4l)

According to general procedure, 4l was obtained in 93% yield (31.5 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.95 (dd, J = 7.7, 1.7 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.52-7.47 (m, 3H), 7.36-7.27 (m, 4H), 7.04 (td, J = 7.6, 1.1 Hz, 1H), 6.96-6.86 (m, 3H), 5.15 (s, 1H), 3.55 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 197.6, 159.2, 157.2, 137.0, 132.1, 130.3, 130.2, 128.8, 128.3, 127.0, 125.3, 122.2, 121.0, 120.8, 119.8, 113.0, 112.3, 86.0, 85.0, 66.0, 55.8; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO$_2$ [M+H]$^+$ 340.1332, found 340.1337.

2-Methyl-2-(phenylethynyl)indolin-3-one (4m)

According to general procedure, 4m was obtained in 92% yield (22.7 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.68 (d, J = 7.7 Hz, 1H), 7.50 (ddd, J = 8.4, 7.1, 1.4 Hz, 1H), 7.41 (dd, J = 8.0, 1.7 Hz, 2H), 7.32-7.25 (m, 3H), 6.93-6.88 (m, 2H), 4.98 (s, 1H), 1.72 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 198.6, 159.8, 137.8, 132.0, 128.6, 128.3, 125.8, 122.2, 120.0, 119.1, 113.1, 87.1, 82.8, 60.8, 25.5; HR-ESIMS m/z calcd for C$_{17}$H$_{14}$NO [M+H]$^+$ 248.1070, found 248.1073.
5-Fluoro-2-methyl-2-(phenylethynyl)indolin-3-one (4n)

According to general procedure, 4n was obtained in 90% yield (23.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.42-7.37 (m, 2H), 7.34-7.24 (m, 5H), 6.88 (dd, J = 8.8, 3.7 Hz, 1H), 4.87 (s, 1H), 1.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 157.9, 156.4, 156.3, 132.0, 128.8, 128.3, 126.0, 125.8, 122.0, 119.7, 119.6, 114.5, 114.4, 110.6, 110.5, 86.8, 83.1, 61.9, 25.5; HR-ESIMS m/z calcd for C₁₇H₁₃FNO [M+H]⁺ 266.0976, found 266.0979.

2-Ethyl-2-(phenylethynyl)indolin-3-one (4o)

According to general procedure, 4o was obtained in 90% yield (24.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 1H), 7.52-7.46 (m, 1H), 7.43-7.38 (m, 2H), 7.34-7.22 (m, 3H), 6.97-6.81 (m, 2H), 4.94 (s, 1H), 2.15-2.07 (m, 1H), 1.95-1.89 (m, 1H), 1.11 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.6, 160.3, 137.7, 132.0, 128.6, 128.3, 125.6, 122.3, 119.9, 119.9, 113.1, 86.3, 83.6, 65.0, 31.9, 8.7; HR-ESIMS m/z calcd for C₁₈H₁₆NO [M+H]⁺ 262.1226, found 262.1224.

Ethyl 5-(3-oxo-2-(phenylethynyl)indolin-2-yl)pentanoate (4p)

According to general procedure, 4p was obtained in 91% yield (32.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.7 Hz, 1H), 7.50 (ddd, J = 8.3, 7.1, 1.4 Hz, 1H), 7.39 (dd, J = 8.0, 1.7 Hz, 2H), 7.30-7.25 (m, 3H), 6.93-6.87 (m, 2H), 4.91 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 2.32 (t, J = 7.2 Hz, 2H), 2.07 (dd, J = 13.4, 11.9, 3.9 Hz, 1H), 1.87 (dd, J = 13.4, 10.9, 4.6 Hz, 1H), 1.75-1.67 (m, 3H), 1.51-1.43 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.4, 173.7, 160.3, 137.8, 132.1, 128.7, 128.3, 125.7, 122.2, 120.0, 119.8, 113.2, 86.3, 83.7, 64.4, 60.4, 38.2, 34.2, 24.5, 23.9, 14.4; HR-ESIMS m/z calcd for C₂₃H₂₄NO₃ [M+H]⁺ 362.1751, found 362.1753.

1-Methyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4q)

According to general procedure, 4q was obtained in 92% yield (29.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.67-7.63 (m, 1H), 7.60-7.50 (m, 5H), 7.44-7.29 (m, 6H), 6.92 (d, J = 8.3 Hz, 1H), 6.83 (t,
$J = 7.3$ Hz, 1H), 3.07 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 195.8, 161.3, 138.2, 135.9, 132.2, 129.0, 128.9, 128.7, 128.4, 126.7, 126.5, 122.1, 118.3, 117.8, 108.9, 86.0, 84.1, 72.4, 29.4; HR-ESIMS m/z calcd for C$_{23}$H$_{18}$NO [M+H]$^+$ 324.1383, found 324.1387.

1-Benzyl-2-phenyl-2-(phenylethynyl)indolin-3-one (4r)

According to general procedure, 4r was obtained in 94% yield (37.5 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.70 (d, $J = 7.7$ Hz, 1H), 7.57 (d, $J = 7.3$ Hz, 2H), 7.45 (t, $J = 7.7$ Hz, 1H), 7.42-7.22 (m, 13H), 6.84 (t, $J = 7.4$ Hz, 1H), 6.67 (d, $J = 8.3$ Hz, 1H), 4.68 (d, $J = 16.6$ Hz, 1H), 4.56 (d, $J = 8.3$ Hz, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 195.9, 160.8, 138.1, 137.4, 136.2, 132.0, 129.0, 128.8, 128.6, 128.3, 127.3, 127.2, 126.9, 126.4, 122.0, 118.6, 118.2, 109.8, 86.9, 84.3, 72.8, 48.7; HR-ESIMS m/z calcd for C$_{29}$H$_{22}$NO [M+H]$^+$ 400.1696, found 400.1701.

2-Allyl-5-chloro-2-phenylindolin-3-one (6b)

According to general procedure, 6b was obtained in 92% yield (26.0 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.62-7.56 (m, 2H), 7.53 (d, $J = 2.2$ Hz, 1H), 7.43 (dd, $J = 8.7$, 2.2 Hz, 1H), 7.38-7.34 (m, 2H), 7.32-7.28 (m, 1H), 6.93 (d, $J = 8.6$ Hz, 1H), 5.61-5.52 (m, 1H), 5.18 (dd, $J = 17.0$, 1.1 Hz, 1H), 5.11-5.07 (m, 2H), 3.04 (dd, $J = 14.0$, 5.9 Hz, 1H), 2.66 (dd, $J = 14.0$, 8.4 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 200.1, 158.6, 138.2, 137.4, 132.4, 128.9, 128.0, 125.9, 124.8, 124.6, 120.8, 120.2, 113.6, 71.7, 43.0; HR-ESIMS m/z calcd for C$_{17}$H$_{15}$ClNO [M+H]$^+$ 284.0837, found 284.0838.

2-Allyl-5-methyl-2-phenylindolin-3-one (6c)

According to general procedure, 6c was obtained in 85% yield (22.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.64-7.60 (m, 2H), 7.40-7.30 (m, 4H), 7.29-7.26 (m, 1H), 6.90 (d, $J = 8.3$ Hz, 1H), 5.63-5.54 (m, 1H), 5.19-5.14 (m, 1H), 5.10-5.05 (m, 1H), 4.94 (s, 1H), 3.07-3.02 (m, 1H), 2.66 (dd, $J = 14.0$, 8.3 Hz, 1H), 2.29 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 201.4, 158.9, 138.9, 132.8, 129.0, 128.7, 127.7, 126.0, 124.8, 119.9, 119.8, 112.4, 71.1, 43.0, 20.7; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO [M+H]$^+$ 264.1383, found 264.1381.
2-Allyl-5-methoxy-2-phenylindolin-3-one (6d)

According to general procedure, 6d was obtained in 90% yield (25.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.66-7.61 (m, 2H), 7.37-7.33 (m, 2H), 7.29-7.26 (m, 1H), 7.18 (dd, J = 8.8, 2.7 Hz, 1H), 7.01 (d, J = 2.7 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 5.63-5.54 (m, 1H), 5.17 (dd, J = 17.0, 1.2 Hz, 1H), 5.10-5.06 (m, 1H), 4.83 (s, 1H), 3.76 (s, 3H), 3.04 (dd, J = 17.0, 1.2 Hz, 1H), 2.67 (dd, J = 14.0, 8.3 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 201.7, 156.2, 153.8, 139.0, 132.8, 128.7, 128.1, 127.1, 126.1, 120.1, 119.8, 114.1, 105.2, 71.7, 55.9, 43.1; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO$_2$ [M+H]$^+$ 280.1332, found 280.1333.

2-Allyl-6-methyl-2-phenylindolin-3-one (6e)

According to general procedure, 6e was obtained in 87% yield (22.9 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.60 (d, J = 7.6 Hz, 2H), 7.45 (d, J = 7.9 Hz, 1H), 7.36-7.31 (m, 2H), 7.26 (dd, J = 8.4, 6.2 Hz, 1H), 6.76 (s, 1H), 6.65 (d, J = 7.9 Hz, 1H), 5.62-5.53 (m, 1H), 5.15 (d, J = 17.0 Hz, 1H), 5.06 (d, J = 10.1 Hz, 1H), 5.01 (s, 1H), 3.03 (dd, J = 14.0, 8.4 Hz, 1H), 2.38 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 200.5, 160.9, 149.2, 138.9, 132.8, 128.7, 127.7, 126.0, 125.3, 121.2, 119.8, 117.4, 112.4, 71.0, 42.9, 22.6; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO [M+H]^+ 264.1383, found 264.1381.

2-Allyl-7-methyl-2-phenylindolin-3-one (6f)

According to general procedure, 6f was obtained in 90% yield (23.7 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.66-7.62 (m, 2H), 7.45 (d, J = 7.8 Hz, 1H), 7.38-7.34 (m, 2H), 7.33 (d, J = 7.1 Hz, 1H), 7.30-7.27 (m, 1H), 6.80 (t, J = 7.4 Hz, 1H), 5.64-5.56 (m, 1H), 5.17 (dd, J = 17.0, 1.2 Hz, 1H), 5.11-5.07 (m, 1H), 4.85 (s, 1H), 3.10-3.06 (m, 1H), 2.65 (dd, J = 14.0, 8.4 Hz, 1H), 2.32 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 201.6, 159.6, 138.8, 137.4, 132.9, 128.7, 127.8, 126.0, 122.9, 121.5, 119.8, 119.6, 119.2, 70.8, 43.0, 15.9; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO [M+H]^+ 264.1383, found 264.1381.

2-Allyl-2-methylindolin-3-one (6g)
According to general procedure, 6g was obtained in 91% yield (17.0 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.61 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.3 Hz, 1H), 6.92-6.76 (m, 2H), 5.77-5.70 (m, 1H), 5.15-5.08 (m, 2H), 4.66 (s, 1H), 2.45-2.39 (m, 1H), 2.39-2.32 (m, 1H), 1.32 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 204.6, 160.0, 137.4, 132.5, 125.0, 120.4, 119.5, 119.0, 112.6, 66.4, 42.1, 22.5; HR-ESIMS m/z calcd for C$_{12}$H$_{14}$NO [M+H]$^+$ 188.1070, found 188.1071.

2-Allyl-2-(4-fluorophenyl)indolin-3-one (6h)

According to general procedure, 6h was obtained in 92% yield (24.5 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.65-7.56 (m, 3H), 7.50 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.06-7.01 (m, 2H), 6.98 (d, J = 8.2 Hz, 1H), 6.88-6.84 (m, 1H), 5.60-5.52 (m, 1H), 5.17 (dd, J = 17.0, 1.1 Hz, 1H), 5.12-5.08 (m, 1H), 5.06 (s, 1H), 3.06-2.96 (m, 1H), 2.61 (dd, J = 14.1, 8.5 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 201.2, 163.3, 161.7, 160.3, 137.6, 134.4, 134.4, 132.4, 127.9, 127.8, 125.6, 120.2, 119.7, 119.6, 115.6, 115.5, 112.6, 70.2, 43.1; HR-ESIMS m/z calcd for C$_{17}$H$_{15}$FNO [M+H]$^+$ 268.1132, found 268.1134.

2-Allyl-2-(p-tolyl)indolin-3-one (6i)

According to general procedure, 6i was obtained in 88% yield (23.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.57 (d, J = 7.7 Hz, 1H), 7.51-7.46 (m, 3H), 7.16 (d, J = 8.1 Hz, 2H), 6.96 (d, J = 8.2 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 5.64-5.57 (m, 1H), 5.17 (dd, J = 17.0, 1.2 Hz, 1H), 5.10-5.05 (m, 2H), 3.04 (dd, J = 14.0, 5.9 Hz, 1H), 2.63 (dd, J = 14.0, 8.4 Hz, 1H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 201.4, 160.4, 137.5, 137.4, 135.6, 132.8, 129.5, 125.9, 125.6, 119.8, 119.7, 119.3, 112.3, 70.7, 42.7, 21.1; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO [M+H]$^+$ 264.1383, found 264.1383.

2-Allyl-2-(4-(trifluoromethoxy)phenyl)indolin-3-one (6j)

According to general procedure, 6j was obtained in 93% yield (30.9 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.70-7.67 (m, 2H), 7.59 (d, J = 7.7 Hz, 1H), 7.51 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.20 (d,
$J = 8.1$ Hz, 2H), 6.99 (d, $J = 8.3$ Hz, 1H), 6.89-6.85 (m, 1H), 5.60-5.51 (m, 1H), 5.18 (dd, $J = 17.0$, 1.1 Hz, 1H), 5.13-5.10 (m, 1H), 5.05 (s, 1H), 3.05-3.01 (m, 1H), 2.62 (dd, $J = 14.1$, 8.5 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 200.8, 160.3, 148.9, 137.8, 137.4, 132.2, 127.7, 125.6, 121.4, 121.1, 120.4, 119.8, 119.6, 112.7, 70.2, 43.2; HR-ESIMS m/z calcd for C$_{18}$H$_{15}$F$_3$NO$_2$ [M+H]$^+$ 334.1049, found 334.1052.

2-Allyl-2-(3-methoxyphenyl)indolin-3-one (6k)

According to general procedure, 6k was obtained in 95% yield (26.5 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.57-7.54 (m, 1H), 7.46 (ddd, $J = 8.3$, 7.1, 1.3 Hz, 1H), 7.26-7.24 (m, 1H), 7.21-7.16 (m, 2H), 6.94 (d, $J = 8.2$ Hz, 1H), 6.83-6.79 (m, 2H), 5.62-5.54 (m, 1H), 5.15 (dd, $J = 17.0$, 1.2 Hz, 1H), 5.09-5.03 (m, 2H), 3.79 (s, 3H), 3.05-3.01 (m, 1H), 2.60 (dd, $J = 14.0$, 8.5 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 201.0, 160.3, 159.9, 140.3, 137.5, 132.8, 129.8, 125.6, 119.9, 119.7, 119.4, 118.4, 112.8, 112.4, 112.2, 70.7, 55.4, 43.0; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO $[M+H]^+$ 280.1332, found 280.1331.

2-Allyl-2-(o-toly)lindolin-3-one (6l)

According to general procedure, 6l was obtained in 94% yield (24.7 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.66 (d, $J = 7.7$ Hz, 1H), 7.59 (dd, $J = 7.3$, 1.9 Hz, 1H), 7.49 (ddd, $J = 8.3$, 7.2, 1.3 Hz, 1H), 7.25-7.19 (m, 2H), 7.16-7.12 (m, 1H), 6.90-6.86 (m, 2H), 5.81-5.69 (m, 1H), 5.17 (dd, $J = 17.0$, 1.5 Hz, 1H), 5.11-5.04 (m, 1H), 4.99 (s, 1H), 3.15 (ddd, $J = 14.0$, 6.3 Hz, 1H), 2.78 (ddd, $J = 14.0$, 7.7 Hz, 1H), 2.17 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 202.5, 159.8, 137.8, 137.4, 136.9, 132.5, 132.4, 128.1, 128.0, 126.0, 124.8, 121.3, 120.0, 119.4, 112.5, 71.5, 41.9, 21.4; HR-ESIMS m/z calcd for C$_{18}$H$_{18}$NO $[M+H]^+$ 264.1383, found 264.1385.

5-Chloro-3-oxo-2-phenylindoline-2-carbonitrile (6m)

According to general procedure, 6m was obtained in 92% yield (24.6 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.61 (d, $J = 2.1$ Hz, 1H), 7.56 (dd, $J = 8.7$, 2.2 Hz, 1H), 7.54-7.50 (m, 2H), 7.45-7.41 (m, 3H), 7.02 (d, $J = 8.7$ Hz, 1H), 5.47 (s, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 189.8, 158.6, 189.8, 158.6,
5-Methyl-3-oxo-2-phenylindoline-2-carbonitrile (6n)

According to general procedure, 6n was obtained in 85% yield (21.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.58-7.53 (m, 2H), 7.49-7.40 (m, 6H), 6.98 (d, $J = 8.5$ Hz, 1H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 190.9, 158.6, 140.2, 133.4, 131.4, 129.6, 129.3, 125.8, 125.3, 117.1, 116.8, 112.77, 65.9, 20.5; HR-ESIMS m/z calcd for C$_{16}$H$_{13}$N$_2$O [M+H]$^+$ 249.1022, found 249.1024.

5-Methoxy-3-oxo-2-phenylindoline-2-carbonitrile (6o)

According to general procedure, 6o was obtained in 90% yield (23.7 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.56-7.53 (m, 2H), 7.45-7.40 (m, 3H), 7.29 (dd, $J = 8.9$, 2.7 Hz, 1H), 7.06-7.00 (m, 2H), 5.18 (s, 1H), 3.80 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 191.2, 156.0, 155.2, 133.5, 129.8, 129.6, 129.5, 125.5, 117.6, 117.0, 114.5, 106.1, 66.6, 56.0; HR-ESIMS m/z calcd for C$_{16}$H$_{13}$N$_2$O$_2$ [M+H]$^+$ 265.0972, found 265.0971.

2-(4-Fluorophenyl)-3-oxoindoline-2-carbonitrile (6p)

According to general procedure, 6p was obtained in 92% yield (23.1 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.65 (dd, $J = 7.8$, 0.5 Hz, 1H), 7.62 (ddd, $J = 8.4$, 7.2, 1.3 Hz, 1H), 7.56-7.52 (m, 2H), 7.13-7.08 (m, 2H), 7.06-7.00 (m, 2H), 5.44 (s, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 190.7, 164.4, 162.8, 160.1, 139.2, 129.1, 129.1, 127.6, 127.6, 126.8, 121.8, 116.9, 116.8, 116.3, 116.5, 113.0, 64.9; HR-ESIMS m/z calcd for C$_{15}$H$_{10}$FN$_2$O [M+H]$^+$ 253.0772, found 253.0771.

3-Oxo-2-(p-tolyl)indoline-2-carbonitrile (6q)

According to general procedure, 6q was obtained in 88% yield (21.8 mg). 1H NMR (600 MHz, CDCl$_3$) δ 7.66 (d, $J = 7.8$ Hz, 1H),
7.61 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.06-6.98 (m, 2H), 5.36 (s, 1H), 2.36 (s, 3H). \(^{13} \text{C} \) NMR (151 MHz, CDCl\(_3\)) \(\delta \) 191.2, 160.3, 140.0, 139.0, 130.3, 130.2, 126.8, 125.4, 121.6, 117.1, 116.9, 112.8, 65.5, 21.3; HR-ESIMS m/z calcd for C\(_{16}\)H\(_{13}\)N\(_2\)O \([\text{M+H}]^+\) 249.1022, found 249.1025.

3-Oxo-2-(4-(trifluoromethoxy)phenyl)indoline-2-carbonitrile (6r)

According to general procedure, 6r was obtained in 93% yield (29.5 mg). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 7.70-7.60 (m, 4H), 7.28 (d, J = 8.8 Hz, 2H), 7.10-7.02 (m, 2H), 5.45 (s, 1H). \(^{13} \text{C} \) NMR (151 MHz, CDCl\(_3\)) \(\delta \) 190.3, 160.1, 150.3, 139.3, 131.9, 127.4, 126.9, 122.0, 121.8, 121.3, 116.8, 116.6, 113.0, 64.8; HR-ESIMS m/z calcd for C\(_{16}\)H\(_{10}\)F\(_3\)N\(_2\)O \([\text{M+H}]^+\) 319.0689, found 319.0688.

2-(1\(^H\)-Indol-3-yl)-2-(phenylethynyl)indolin-3-one (8a)

According to general procedure, 8a was obtained in 66% yield (22.9 mg). \(^1\)H NMR (600 MHz, acetone-\(d_6\)) \(\delta \) 10.34 (s, 1H), 7.65-7.57 (m, 3H), 7.51-7.49 (m, 3H), 7.45-7.34 (m, 4H), 7.27 (s, 1H), 7.14-7.06 (m, 2H), 6.97-6.89 (m, 2H); \(^{13} \text{C} \) NMR (151 MHz, acetone-\(d_6\)) \(\delta \) 197.4, 161.8, 138.8, 138.5, 132.6, 129.6, 129.5, 126.0, 125.8, 125.4, 123.5, 122.7, 120.9, 120.1, 119.7, 119.1, 114.0, 113.6, 112.6, 88.5, 83.2, 64.0; HR-ESIMS m/z calcd for C\(_{24}\)H\(_{17}\)N\(_2\)O \([\text{M+H}]^+\) 349.1335, found 349.1339.

4-Methyl-2-(4-methyl-1\(^H\)-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8b)

According to general procedure, 8b was obtained in 60% yield (22.5 mg). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta \) 8.21 (s, 1H), 7.52 (d, J = 2.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.37 (t, J = 7.7 Hz, 1H), 7.30-7.26 (t, J = 8.3 Hz, 3H), 7.22 (d, J = 8.1 Hz, 1H), 7.09 (t, J = 7.7 Hz, 1H), 6.91 (d, J = 7.1 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 7.3 Hz, 1H), 5.20 (s, 1H), 2.67 (s, 3H), 2.65 (s, 3H); \(^{13} \text{C} \) NMR (151 MHz, CDCl\(_3\)) \(\delta \) 197.6, 160.1, 141.2, 138.1, 137.1, 132.1, 130.4, 128.6, 128.3, 125.7, 124.6, 122.8, 122.6, 122.0, 118.5, 113.5, 110.9, 109.5, 89.2, 82.9, 63.6, 22.1, 18.6; HR-ESIMS m/z calcd for C\(_{26}\)H\(_{21}\)N\(_2\)O \([\text{M+H}]^+\) 377.1648, found 377.1645.
5-Methyl-2-(5-methyl-1H-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8c)

According to general procedure, 8c was obtained in 68% yield (25.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.55 (s, 1H), 7.49-7.45 (m, 3H), 7.41 (dd, J = 8.3, 1.8 Hz, 1H), 7.31-7.27 (m, 3H), 7.24 (d, J = 8.3 Hz, 1H), 7.22-7.20 (m, 1H), 6.99 (dd, J = 8.3, 1.6 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 5.12 (s, 1H), 2.36 (s, 3H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 158.7, 139.5, 135.5, 132.2, 129.9, 129.6, 128.7, 128.4, 125.4, 124.9, 124.4, 122.5, 119.6, 119.5, 113.3, 113.2, 111.3, 87.0, 83.3, 63.7, 21.8, 20.8; HR-ESIMS m/z calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1648.

6-Methyl-2-(6-methyl-1H-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8d)

According to general procedure, 8d was obtained in 62% yield (23.3 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.48-7.45 (m, 2H), 7.41 (d, J = 2.6 Hz, 1H), 7.33-7.27 (m, 3H), 7.25 (s, 1H), 7.13 (s, 1H), 6.84 (dd, J = 8.2, 1.4 Hz, 1H), 6.78 (d, J = 7.9 Hz, 1H), 6.76 (s, 1H), 5.18 (s, 1H), 2.43 (s, 3H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 196.6, 160.7, 149.9, 137.6, 132.5, 132.2, 128.7, 128.4, 125.8, 124.0, 122.5, 122.4, 122.1, 121.9, 119.4, 117.1, 113.6, 113.1, 111.6, 86.9, 83.4, 63.6, 22.8, 21.8; HR-ESIMS m/z calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1647.

7-Methyl-2-(7-methyl-1H-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8e)

According to general procedure, 8e was obtained in 64% yield (24.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.26 (s, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 2.7 Hz, 1H), 7.49-7.45 (m, 2H), 7.42-7.40 (m, 1H), 7.33-7.26 (m, 3H), 7.18 (d, J = 7.7 Hz, 1H), 6.96-6.90 (m, 3H), 5.09 (s, 1H), 2.44 (s, 3H), 2.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.7, 159.5, 138.2, 136.8, 132.2, 128.7, 128.4, 124.4, 124.0, 123.4, 123.2, 122.4, 122.2, 120.9, 120.6, 120.3, 118.8, 117.4, 114.1, 86.8, 83.5, 63.5, 16.7, 15.9; HR-ESIMS m/z calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648, found 377.1649.
5-Chloro-2-(5-chloro-1H-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8f)

According to general procedure, 8f was obtained in 60% yield (24.9 mg). 1H NMR (600 MHz, CDCl$_3$) δ 8.37 (s, 1H), 7.70 (d, $J = 2.2$ Hz, 1H), 7.54 (dd, $J = 8.7$, 2.2 Hz, 1H), 7.47-7.41 (m, 4H), 7.34-7.27 (m, 3H), 7.24 (s, 1H), 7.09 (dd, $J = 8.7$, 2.0 Hz, 1H), 6.96 (d, $J = 8.6$ Hz, 1H), 5.26 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 195.8, 158.4, 138.3, 135.5, 132.2, 129.1, 128.5, 126.1, 125.8, 125.7, 125.5, 123.2, 121.9, 120.0, 119.3, 114.4, 112.9, 112.8, 85.6, 84.0, 63.9; HR-ESIMS m/z calcd for $C_{24}H_{15}Cl_2N_2O$ [M+H]$^+$ 417.0556, found 417.0556.

5-Methoxy-2-(5-methoxy-1H-indol-3-yl)-2-(phenylethynyl)indolin-3-one (8g)

According to general procedure, 8g was obtained in 67% yield (27.3 mg). 1H NMR (600 MHz, CDCl$_3$) δ 8.15 (s, 1H), 7.51-7.44 (m, 3H), 7.33-7.27 (m, 3H), 7.23 (d, $J = 8.8$ Hz, 2H), 7.19 (d, $J = 2.7$ Hz, 1H), 6.96 (d, $J = 8.8$ Hz, 1H), 6.84 (d, $J = 2.4$ Hz, 1H), 6.80 (dd, $J = 8.8$, 2.5 Hz, 1H), 5.04 (s, 1H), 3.62 (s, 3H); 13C NMR (151 MHz, CDCl$_3$) δ 197.6, 156.1, 154.4, 154.3, 132.3, 132.2, 128.8, 128.7, 128.4, 125.1, 124.9, 122.4, 119.9, 114.9, 113.4, 112.9, 112.4, 105.6, 101.6, 86.6, 83.6, 64.3, 56.0, 55.6; HR-ESIMS m/z calcd for $C_{26}H_{21}N_2O_3$ [M+H]$^+$ 409.1547, found 409.1545.

2-((4-Fluorophenyl)ethynyl)-2-(1H-indol-3-yl)indolin-3-one (8h)

According to general procedure, 8h was obtained in 64% yield (23.4 mg). 1H NMR (600 MHz, CDCl$_3$) δ 8.29 (s, 1H), 7.75 (dd, $J = 7.9$, 1.2 Hz, 1H), 7.58 (ddd, $J = 8.4$, 7.1, 1.4 Hz, 1H), 7.47-7.43 (m, 3H), 7.40 (d, $J = 8.0$ Hz, 1H), 7.35 (d, $J = 8.2$ Hz, 1H), 7.15 (ddd, $J = 8.2$, 7.0, 1.1 Hz, 1H), 7.03-6.95 (m, 5H), 5.27 (s, 1H); 13C NMR (151 MHz, CDCl$_3$) δ 197.2, 163.7, 162.0, 160.2, 138.3, 137.2, 134.2, 134.1, 126.1, 124.6, 124.5, 122.8, 120.4, 120.3, 119.7, 119.2, 118.4, 118.4, 115.8, 115.6, 113.4, 113.1, 111.8, 86.3, 82.5, 63.3; HR-ESIMS m/z calcd for $C_{24}H_{18}FN_2O$ [M+H]$^+$ 367.1241, found 367.1239.
2-(1H-Indol-3-yl)-2-((4-methoxyphenyl)ethynyl)indolin-3-one (8i)

According to general procedure, 8i was obtained in 62% yield (23.4 mg). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 8.20 (s, 1H), 7.78-7.73 (m, 1H), 7.60-7.56 (m, 1H), 7.51 (s, 1H), 7.43-7.39 (m, 3H), 7.35 (d, \(J = 8.2\) Hz, 1H), 7.15 (t, \(J = 7.5\) Hz, 1H), 7.01 (t, \(J = 7.6\) Hz, 1H), 6.97 (d, \(J = 7.7\) Hz, 2H), 6.82 (d, \(J = 8.7\) Hz, 2H), 5.25 (s, 1H), 3.81 (s, 3H); \(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 197.3, 160.2, 159.9, 138.1, 137.1, 133.6, 126.0, 124.6, 124.5, 122.6, 120.2, 120.1, 119.7, 119.2, 114.3, 113.9, 113.8, 113.0, 111.7, 85.0, 83.4, 63.3, 55.4; HR-ESIMS \(m/z\) calcd for C\(_{25}\)H\(_{19}\)N\(_2\)O\(_2\) [M+H]\(^+\) 379.1441, found 379.1444.

Mechanism studies

ESI-MS analysis

ESI-MS analysis of the product by adding H\(_2\)\(^{18}\)O, and no \(^{18}\)O labeling product was detected.

ESI-MS analysis of the reaction solution.

The reaction of 1a with 2a was performed under standard conditions and then ESI-MS analysis was performed with 2,2,6,6-tetramethylpiperidine (9) being detected.

2,2,6,6-Tetramethylpiperidine (9).

The solution of the reaction was filtered and the residue was dissolved in 1.0 mL water. After that, 1 N NaOH was added, and then the mixture was extracted with CHCl\(_3\) (1
mL × 3). The organic solution was evaporated *in vacuum* to give 2,2,6,6-tetramethylpiperidine 9. 1H NMR (600 MHz, CDCl$_3$) δ 1.69-1.64 (m, 2H), 1.40-1.33 (m, 4H), 1.20 (s, 12H); 13C NMR (151 MHz, CDCl$_3$) δ 49.6, 38.2, 31.1, 18.0.

References

1H NMR and 13C NMR spectral data

1H and 13C NMR data of compound 3a

![Chemical Structure](image1)

![NMR Spectra](image2)

![Chemical Structure](image3)
1H and 13C NMR data of compound 3b
1H and 13C NMR data of compound 3c
1H and 13C NMR data of compound 3d
1H and 13C NMR data of compound 3e
1H and 13C NMR data of compound 3f
1H and 13C NMR data of compound 3g
1H and 13C NMR data of compound 3h
1H and 13C NMR data of compound 3i
^{1}H and ^{13}C NMR data of compound 3j
1H and 13C NMR data of compound 3k
1H and 13C NMR data of compound 3l
1H and 13C NMR data of compound 3m
^{1}H and ^{13}C NMR data of compound 3n
1H and 13C NMR data of compound 3o
^{1}H and ^{13}C NMR data of compound 3p
1H and 13C NMR data of compound 3s
1H and 13C NMR data of compound 4a
1H and 13C NMR data of compound 4b
1H and 13C NMR data of compound 4c
1H and 13C NMR data of compound 4d
1H and 13C NMR data of compound 4e
\[^1H \text{ and } ^{13}C \text{ NMR data of compound 4f} \]
1H and 13C NMR data of compound 4g
1H and 13C NMR data of compound 4h
1H and 13C NMR data of compound 4i
1H and 13C NMR data of compound 4j
^{1}H and ^{13}C NMR data of compound 4k
1H and 13C NMR data of compound 4l
1H and 13C NMR data of compound 4m
1H and 13C NMR data of compound 4n
1H and 13C NMR data of compound 4o
1H and 13C NMR data of compound 4p
1H and 13C NMR data of compound 4q

![NMR spectra diagram](image-url)
1H and 13C NMR data of compound 4r
1H and 13C NMR data of compound 6b
1H and 13C NMR data of compound 6c
1H and 13C NMR data of compound 6d
1H and 13C NMR data of compound 6e
1H and 13C NMR data of compound 6f
^{1}H and ^{13}C NMR data of compound 6g
1H and 13C NMR data of compound 6h
1H and 13C NMR data of compound 6i
1H and 13C NMR data of compound 6j
^{1}H and ^{13}C NMR data of compound 6k
^{1}H and ^{13}C NMR data of compound 6I
1H and 13C NMR data of compound 6m
1H and 13C NMR data of compound 6n
1H and 13C NMR data of compound 6o
^{1}H and ^{13}C NMR data of compound 6p
1H and 13C NMR data of compound 6q
1H and 13C NMR data of compound 6r
^1H and ^{13}C NMR data of compound 8a
1H and 13C NMR data of compound 8b
^{1}H and ^{13}C NMR data of compound 8c
1H and 13C NMR data of compound 8d
1H and 13C NMR data of compound 8e
1H and 13C NMR data of compound 8f

![NMR Spectra Image]
1H and 13C NMR data of compound 8g
1H and 13C NMR data of compound 8h
1H and 13C NMR data of compound 8i
1H and 13C NMR data of compound 9