Selective Targeting of DC-SIGN by Controlling the Oligomannose Pattern on a Polyproline Tetra-Helix Macrocycle Scaffold

Electronic Supplementary Information

Hsin-Chuan Wen,1,† Cin-Hao Lin,1,† Jen-Sheng Huang,1 Chia-Lung Tsai,1 Ting-Feng Chen,1 and Sheng-Kai Wang*,1,2

Affiliation

1 Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.

2 Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.

[†] These authors contributed equally to this work.

* Corresponding Author

E-mail: skwang@mx.nthu.edu.tw
Table of Contents:

1. General Methods for Synthesis and Characterization ... S-3
2. Synthesis of Glycodendrons ... S-4
 General methods for peptide synthesis and analysis ... S-13
 Synthesis of peptide monomers: peptide acids ... S-17
 Synthesis of peptide monomers: peptide alkynes ... S-19
 Synthesis of peptide oligomers: peptide acids ... S-21
 Synthesis of peptide oligomers: peptide alkynes ... S-24
 Synthesis of peptide oligomers: cyclic peptides .. S-27
 Synthesis of peptide oligomers: deprotected cyclic peptide ... S-30
 Synthesis of peptide oligomers: alkynyl cyclic peptide .. S-31
 Synthesis of peptide oligomers: glycoconjugates .. S-32
 1H NMR spectra of 8b .. S-34
 Circular dichroism spectra of 7 and 8 ... S-35
4. Expression and Purification of Target Lectins .. S-36
5. Surface Plasmon Resonance Assay .. S-40
References .. S-45
NMR Spectra .. S-46
1. General Methods for Synthesis and Characterization

All reagents and solvents were purchased from Merck, Sigma-Aldrich and Acros. \textit{N-Fmoc-trans-(2S,4R)-4-(N-allyloxycarbonyl)amino-L-proline} was synthesized according to the literature.1 The composition of mixed solvents was given by volume ratio. Thin-layer chromatography was performed on Merck Glass Plate TLC Silica gel 60 F254. The spots were visualized by UV light, cerium ammonium molybdate, ninhydrin, KMnO\textsubscript{4}, bromophenol blue and \textit{p}-anisaldehyde staining. Column chromatography was performed on by Merck Geduran Si 60 Silica gel (40-63 um). 1H- and 13C- NMR spectra were recorded on Varian Mercury 400, Bruker AV-400 or Varian VNMRS-600 spectrometers. The signals are presented in parts per million (ppm, \(\delta\) scale) unit. For 1H NMR spectra, chemical shifts are expressed in ppm with residual proton signals in CDCl\textsubscript{3} (7.24 ppm), D\textsubscript{2}O (4.80 ppm) or CD\textsubscript{3}OD (3.31 ppm) as standards. For 13C NMR spectra, chemical shifts are expressed in ppm with carbon signals in CDCl\textsubscript{3} (77.0 ppm) or CD\textsubscript{3}OD (49.15 ppm) as standards. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet, br = broad), coupling constant (\(J\)) in Hertz (Hz), and integration. A Bruker Impact HD instrument was used for electrospray ionization (ESI) mass spectrometry measurements. The products were confirmed by MALDI-TOF mass spectrometry (Bruker Daltonics, Autoflex III smartbeam LRF200-CID) by using 2,5-dihydroxybenzoic acid as matrix.
2. Synthesis of Glycodendrons

Scheme S1. Synthesis of S7.

Tris|{(2-cyanoethoxy)methyl]aminomethane (S1)²

To a flask containing KOH (0.250 g, 4.46 mmol) in H₂O (1.25 mL) and dioxane (5 mL) was added tris(hydroxymethyl)aminomethane (5.0 g, 41 mmol) with stirring. Then acrylonitrile was dropwise added and the solution was stirred vigorously for 24 h. The dioxane was removed by reduced pressure and the residue was added DCM (70 mL), wash with H₂O (50 mL × 3) and brine, dried over Na₂SO₄, and concentrated under vacuum to give S1 (6.75 g, 58%) without further purification. ¹H NMR (400 MHz, CDCl₃) δ 3.59 (t, J = 5.8 Hz, 6H), 3.34 (s, 6H), 2.53 (t, J = 5.8 Hz, 6H); ESI-MS (m/z): [M+Na]⁺ calcd. for C₁₃H₂₀N₄NaO₃: 303.1428, found: 303.1429. Proton NMR was consistent with literature data.²
Tris[(2-ethylcarboxylethoxy)methyl]aminomethane (S2)

To a flask containing S1 (5.0 g, 17.84 mmol) in EtOH (6.4 mL) was added p-Toluenesulfonic acid monohydrate (20.0 g, 105.1 mmol) and toluene (5 mL), and the reaction was refluxed for 1 d. Then precipitate was removed by filtration. The filtrate was added DCM (80 mL), washed by NaHCO3 (100 mL × 3) and brine, dried over Na2SO4, and concentrated under vacuum to give S2 (4.148 g, 55%) without further purification. 1H NMR (400 MHz, CDCl3) δ 4.11 (q, J = 7.1 Hz, 6H), 3.66 (t, J = 6.4 Hz, 6H), 3.30 (s, 6H), 2.51 (t, J = 6.4 Hz, 6H), 1.23 (t, J = 7.1 Hz, 9H); ESI-MS (m/z): [M+H]+ calcd. for C19H36NO9: 422.2385, found: 422.2391. Proton NMR was consistent with literature data.

tert-butoxycarbonyl-3-{{N-\{tris[3-(ethylcarboxyl-ethoxy)methyl]\}methylamide}-3-β-alanine (S4)

To a flask containing S2 (1.50 g, 3.56 mmol) and S3 (0.81 g, 4.27 mmol) in DMF (12 mL) was added HOBt (0.72 g, 5.34 mmol) and DIEA (930 µL, 5.34 mmol) under argon protection in ice bath. Then EDC (1.23 g, 6.41 mmol) was added, and the reaction was stirred at room temperature for 14 h. The reaction solution was added ethyl acetate (200 mL), washed by H2O (50 mL × 3) and brine, dried over Na2SO4, concentrated under vacuum and further purified by column chromatography (MeOH/CHCl3 = 1:100 to 1:50) to give S4 (0.7894 g, 37%). 1H NMR (400 MHz, CDCl3): δ 4.12 (q, J = 7.1 Hz, 6H), 3.67 (s, 6H), 3.67 (t, J = 6.2 Hz, 6H), 3.71-3.68 (m, 12H), 3.34 (dt, J = 5.8, 5.8 Hz, 2H), 3.51 (t, J = 6.2 Hz, 6H), 2.32 (t, J = 5.8 Hz, 2H), 1.40 (s, 9H), 1.24 (t, J = 7.1 Hz, 6H). ESI-MS (m/z):
[M+Na]⁺ calcd for C_{27}H_{48}N_{2}NaO_{12}: 615.3099, found: 615.3110. Proton NMR was consistent with literature data.³

tert-butoxycarbonyl-3-{N-{tris[3-(carboxyl-ethoxy)methyl]}methylamide}-3-β-alanine (S5)

To a flask containing S₄ (0.4726 mg, 0.797 mmol) in EtOH (5 mL) was added 2 N NaOH(aq) (5 mL, 10 mmol) and stirred at room temperature for 2 h. The reaction solution was neutralized by adding AG⁺⁻ 50WX8 hydrogen form ion exchange resin, then filtered and concentrated under vacuum to give S₅ (0.4597 g, quanti.) without further purification. ¹H NMR (400 MHz, CD₃OD): δ 3.71 (s, 6H), 3.68 (t, J = 6.6 Hz, 6H), 3.28 (t, J = 6.9 Hz, 2H), 2.41 (t, J = 6.6 Hz, 6H), 2.39 (t, J = 6.9 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100.7 MHz, CD₃OD): δ 180.41 (3C), 174.22, 158.41, 80.18, 70.84, 70.28, 61.49, 39.40, 38.18, 37.95, 28.96. ESI-MS (m/z): [M+H]⁺ calcd for C_{21}H_{37}N_{2}O_{12}: 509.2341 found: 509.2342.

tert-Butoxycarbonyl-3-{N-{tris[3-(propargyl-methyl)]methylamide}-3-β-alanine (S6)⁵

To a flask containing S₅ (180 mg, 0.354 mmol) and propargylamine (68 mg, 1.24 mmol) in DMF (3 mL) was added HOBt (220 mg, 1.42 mmol) and DIEA (250 µL, 1.42 mmol) under argon protection in ice bath. Then EDC (340 mg, 1.77 mmol) was added, and the reaction was stirred at room temperature for 14 h. The reaction solution was added ethyl acetate (50 mL), washed by H₂O (20 mL × 2) and brine, dried over Na₂SO₄, concentrated under vacuum and further purified by column chromatography to give S₆ (128.1 mg, 58.4%). ¹H NMR (400 MHz, CDCl₃): δ 4.04 (dd, J = 4.8, 2.5 Hz, 6H), 3.71 (t, J = 5.6 Hz, 6H), 3.67 (s, 6H), 3.37 (dt, J = 6.0, 6.0 Hz, 2H), 2.45-2.43 (m, 8H), 2.24 (t, J = 2.5 Hz, 3H), 1.42 (s, 9H).
ESI-MS (m/z): [M+H]+ calcd for C₃₀H₄₆N₅O₉: 620.3290, found: 620.3302. Proton NMR was consistent with literature data.⁵

3-{N-[tris[3-[propargyl-methyl]]methylamide]-3-β-alanine (S7)⁶

To a flask containing S₆ (42.7 mg, 68.9 µmol) in DCM (2 mL) was added 50% TFA/DCM (2 mL) with stirring in ice bath, then reacted for 2 h. TFA and DCM was removed by reduced pressure to give S₇ (43.9 mg, quanti.) without further purification. ¹H NMR (400 MHz, CD₃OD): δ 3.98 (d, J = 2.5 Hz, 6H), 3.68 (t, J = 5.8 Hz, 6H), 3.68 (s, 6H), 3.17 (t, J = 6.4 Hz, 2H), 2.63 (t, J = 6.4 Hz, 2H), 2.62 (t, J = 2.5 Hz, 3H), 2.43 (t, J = 5.8 Hz, 6H). ESI-MS (m/z): [M+Na]+ calcd for C₂₅H₃₇N₅NaO₇: 542.2585, found: 542.2604.
Scheme S2. Synthesis of 9 and 10.

N-(tris[(2-ethylcarboxylethoxy)methyl]methyl)-8-tert-butyloxycarbonylamino-3,6-dioxaoctanamide (S9)

To a flask containing S2 (0.599 g, 1.42 mmol) and S8 (0.412 g, 1.56 mmol) in DMF (5 mL) was added HOBt (0.326 g, 2.13 mmol) and DIEA (0.371 mL, 2.13 mmol) under argon protection in ice bath. Then EDC (0.490 g, 2.56 mmol) was added, and the reaction was stirred at room temperature for 14 h. The reaction solution was added ethyl acetate (100 mL), washed by H2O (30 mL × 3) and brine, dried
over Na₂SO₄, concentrated under vacuum and further purified by column chromatography (MeOH/CHCl₃ = 1:50) to give S9 (0.4754 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 4.05 (q, J = 7.1 Hz, 6H), 3.80 (s, 2H), 3.63 (s, 6H), 3.61 (t, J = 6.4 Hz, 6H), 3.57-3.54 (m, 4H), 3.46 (t, J = 5.0 Hz, 2H), 3.23 (m, 2H), 2.44 (t, J = 6.4 Hz, 6H), 1.35 (s, 9H), 1.17 (t, J = 7.1 Hz, 9H); ¹³C NMR (100.7 MHz, CDCl₃) δ 171.2 (3C), 169.4, 155.8, 79.0, 70.8, 70.6, 70.2, 69.9, 68.9, 66.6, 60.3, 59.3, 40.2, 34.9, 28.2, 14.1; ESI-MS (m/z): [M+Na]⁺ calcd. for C₃₀H₅₄N₂NaO₁₄: 689.3467, found: 689.3474.

N-(tris[(2-carboxylethoxy)methyl]methyl)-8-tert-butyloxycarbonylamino-3,6-dioxooctanamide (S10)

To a flask containing S9 (22.6 mg, 33.9 µmol) in EtOH (0.3 mL) was added 2 N NaOH(aq) (0.3 mL, 0.6 mmol) and stirred at room temperature for 2 h. The reaction solution was neutralized by adding AG⁺ 50WX8 hydrogen form ion exchange resin, then filtered and concentrated under vacuum to give S10 (19.45 mg, 99%) without further purification. ¹H NMR (400 MHz, CD₃OD) δ 3.90 (s, 2H), 3.73 (s, 6H), 3.70 (t, J = 6.1 Hz, 6H), 3.66-3.63 (m, 4H), 3.54 (t, J = 5.6 Hz, 2H), 3.24 (t, J = 5.6 Hz, 2H), 2.53 (t, J = 6.1 Hz, 6H), 1.44 (s, 9H); ¹³C NMR (100.7 MHz, CD₃OD) δ 178.4 (3C), 172.3, 158.7, 80.2, 71.9, 71.6, 71.3, 71.2, 70.4, 69.4, 61.3, 41.2, 38.0, 29.0; ESI-MS (m/z): [M+Na]⁺ calcd. for C₂₄H₄₂N₂NaO₁₄: 605.2528, found: 605.2541.
Boc-G2-alkyne (S11)

To a flask containing **S10** (9.6 mg, 16.5 µmol) and **S7** (43.9 mg, 84.5 µmol) in DMF (0.5 mL) was added HOBt (10 mg, 65.3 µmol) and DIEA (15 µL, 86.1 mmol) under argon protection in ice bath. Then EDC (19.2 mg, 10.0 µmol) was added, and the reaction was stirred at room temperature for 18 h. The reaction solution was added ethyl acetate (30 mL), washed by H2O (10 mL × 2) and brine, dried over Na2SO4, concentrated under vacuum and further purified by column chromatography to give **S11** (25.1 mg, 73%).

1H NMR (400 MHz, CD3OD): δ 3.99 (d, J = 2.5 Hz, 18H), 3.93 (s, 2H), 3.72-3.68 (m, 54H), 3.54 (t, J = 5.7 Hz, 2H), 3.42 (t, J = 7.0 Hz, 6H), 3.25 (t, J = 5.7 Hz, 2H), 2.63 (t, J = 2.5 Hz, 9H), 2.46-2.41 (m, 30H), 1.45 (s, 9H); 13C NMR (100.7 MHz, CD3OD): δ 173.88 (3C), 173.82 (3C), 173.76 (9C), 172.28, 158.56, 81.05, 80.31, 72.60, 72.16, 71.69, 71.42, 71.33, 71.30, 70.37, 70.18, 68.88, 68.62, 61.66, 61.64, 61.32, 41.38, 37.78, 37.46, 37.39, 29.77, 29.64, 29.01. MALDI-TOF-MS (m/z): [M+H]+ calcd for C100H149N16O32: 2086.052, found: 2087.647.

H2N-G2-alkyne (S12)

To a flask containing **S11** (26.4 mg, 12.6 µmol) in DCM (0.5 mL) was added 50% TFA/DCM (0.5 mL) with stirring in ice bath, then reacted for 2 h. TFA and DCM was removed by reduced pressure to give **S12** (20.14 mg, 80%).

1H NMR (400 MHz, CD3OD): δ 3.99 (d, J = 2.5 Hz, 18H), 3.96 (s, 2H), 3.72-3.68 (m, 56H), 3.42 (t, J = 7.0 Hz, 6H), 3.20 (t, J = 5.0 Hz, 2H), 2.63 (t, J = 2.5 Hz, 9H), 2.46-2.42 (m, 30H); 13C NMR (400 MHz, CD3OD): 173.95 (3C), 173.86 (3C), 173.81 (9C), 172.24, 81.04, 72.58, 72.02,
71.42, 70.37, 70.18, 68.85, 68.63, 68.17, 61.76, 61.67, 61.39, 55.29, 40.83, 37.70, 37.44, 37.40, 29.78, 29.65. ESI-MS (m/z): [M+2Na]^{2+} calcd for C_{94}H_{139}N_{17}Na_{2}O_{30}: 1015.9829, found: 1015.9729.

\textbf{H}_{2}\text{N-G2-Man (9)}

The solution of alkynyl dendrimer \textbf{S12} (2.5 mM) was added CuSO_{4}(aq) (30 equiv., 40 mM), tris(triazoly)amine ligand \textbf{5} (30 equiv., 40 mM in DMSO), sodium ascorbate (aq) (600 equiv., 800 mM), and 10 µL PBS buffer, and the glycan ligand \textbf{Man} (3 equiv./per alkyne, 25 mM) to react at room temperature for 1 h. The product was purified from crude reaction mixture by Microcon® 0.5 mL 3 kDa centrifugal filter. MS(MALDI): [M+H]^{+} calcd. for C_{166}H_{275}N_{44}O_{84}: 4228.859, found: 4230.162.

\textbf{H}_{2}\text{N-G2-Man}_{4} (10)

The solution of alkynyl dendrimer \textbf{S12} (2.5 mM) was added CuSO_{4}(aq) (30 equiv., 40 mM), tris(triazoly)amine ligand \textbf{5} (30 equiv., 40 mM in DMSO), sodium ascorbate (aq) (600 equiv., 800 mM), and 10 µL PBS buffer, and the glycan ligand \textbf{Man}_{4} (3 equiv./per alkyne, 25 mM) to react at room temperature for 1 h. The product was purified from crude reaction mixture by Microcon® 0.5 mL 3 kDa centrifugal filter. MS(MALDI): [M+Cu]^{+} calcd. for C_{355}H_{598}N_{44}CuO_{219}: 9044.630, found: 9046.337.

\textbf{2-azidoethyl 3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside (Man}_{3})

2-azidoethyl 3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside (Man_{3})
Man₃ ¹H NMR (400 MHz, D₂O): δ 5.10 (s, 1H, H-1), 4.90 (d, J₁',₂' = 1.0 Hz, 1H, H-1’), 4.88 (d, J₁''',₂''' = 1.2 Hz, 1H, H-1”’), 4.12 (m, 1H, H-2), 4.06 (dd, J₂',₁' = 1.4 Hz, J₂',₃' = 3.1 Hz, 1H, H-2’), 3.98 (d, J₂'',₁'' = 1.2 Hz, 1H, H-2””), 3.90-3.80 (m, 9H, H-3, H-3’, H-3”’, H-4*, H-4”*, H-5, H-6a, H-6b*, H-6b”*), 3.77-3.70 (m, 5H, H-5’, H-5”’, H-6a”, H-6б”, OCH₂CH₂N₃), 3.68-3.62 (m, 3H, H-4”*, H-6b”*), 3.56-3.48 (m, 2H, OCH₂CH₂N₃). Assignments indexed with * are interchangeable. Proton NMR was consistent with literature data.⁸ ESI-MS(m/z): [M+Na]⁺ calcd. for C₂₀H₃₅N₃NaO₁₆: 596.1910, found: 596.1923.

5-azidopentyl α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-mannopyranoside (Man₄)

Man₄ ¹H NMR (400 MHz, D₂O): δ 5.36 (s, 1H), 5.31 (s, 1H), 5.05 (s, 1H), 4.84 (s, 1H), 4.11 (s, 1H), 4.08 (s, 3H), 4.01–3.95 (m, 2H), 3.89–3.85 (m, 6H), 3.78–3.64 (m, 13H), 3.58–3.53 (m, 1H), 3.35 (t, J = 6.7 Hz, 2H), 1.68–1.63 (m, 4H), 1.48–1.43 (m, 2H). Proton NMR was consistent with literature data.⁹
3. Synthesis of Peptide and Glycoconjugates

General methods for peptide synthesis and analysis:

Peptide analysis:

1H-NMR spectra were recorded on Varian VNMRS-600. The peptide products were confirmed by MALDI-TOF mass spectrometry (Bruker Daltonics, Autoflex III smartbeam LRF200-CID) by using 2,5-dihydroxybenzoic acid as matrix. Analytical HPLC (Agilent Technology, 1260 Infinity) was performed with a Vydac C18 column (218TP54 4.6 mm × 250 mm). 0.1% TFA in water (solvent A), Acetonitrile (solvent B) served as the mobile phase for compound purifications. Aviv Model 410 spectropolarimeter (Aviv Associates, Lakewood, NJ) was used for CD measurements. The solutions were measured in a quartz cell with a pathlength of 1.0 mm (Hellma 110-QS).

Solid phase peptide synthesis:

The peptides were prepared by manual solid phase peptide synthesis on 2-chlorotrityl chloride resin from Merck (Product No. 855017). A solution of Fmoc-Pro-OH (4.0 equiv.) and iPr$_2$NEt (6.0 equiv.) in 1:1 v/v DMF/DCM (final concentration 0.4 M) was added to the resins. The mixture was gently shaken for overnight and washed with DMF (3 × 3 mL), DCM (3 × 3 mL), and DMF (3 × 3 mL). A solution of DCM/MeOH/iPr$_2$NEt (17:2:1, 8 mL) was added and shaken for 1 h to block the unreacted sites on the resins. After washed with DMF (3 × 3 mL), DCM (3 × 3 mL), and DMF (3 × 3 mL), the amino acid loading was determined with a quantitative Fmoc test. The resins were further used in iterative peptide
synthesis. 10% piperidine in DMF (3 mL) was added to the resins to deprotect the Fmoc group. The
vessel was shaken for 10 min and washed with DMF (3 × 3 mL), DCM (3 × 3 mL), and DMF (3 × 3 mL).
The mixture of amino acids (4 equiv., Fmoc-Pro-OH or N-Fmoc-trans-(2S,4R)-4-(N-
allyloxy carbonyl)amino-L-proline based on the designed sequence), PyBOP (4 equiv., for Fmoc-Pro-OH)
or HATU (4 equiv., for N-Fmoc-trans-(2S,4R)-4-(N-allyloxycarbonyl)amino-L-proline) were dissolved
in DMF, added NMM (4 equiv.) and react with the deprotect resins (final concentration 0.2 M). The
mixture was gently shaken for 1 h then washed with DMF (3 × 3 mL), DCM (3 × 3 mL), and DMF (3 × 3 mL). After each coupling step, the resins were treated with Ac2O/py. (1:9, 3mL) and shaken for 10 min
to cap the unreacted amino groups. The resins were washed with DMF (3 × 3 mL), DCM (3 × 3 mL),
and DMF (3 × 3 mL), and continued for the next round of synthesis. To cleave the peptide, the resins
were washed with DCM (3 × 3 mL), then treated with DCM/TFA/TIS (90:5:5, 3 mL) and shaken for 1 h
and repeated for a second time with shaking for 30 min. The filtrate was collected and all of the volatiles
were removed under reduced pressure. Water (1-2 mL) was added to the resulting syrup-like residue and
centrifuged before the supernatant was further purified by HPLC (Agilent Technology, 1260 Infinity)
with a Vydac C18 column (218TP510 10 mm × 250 mm).

Polyproline N-terminus azido modification:

To a solution of azido connector 2 (4 equiv.) dissolved in DMF and iPr2NEt (8 equiv.) was added to the
resins carrying N-terminus deprotected peptide in DMF (final concentration of 2 at 0.2 M) and gently
shaken for 1 h. The resins were washed with DMF (3 × 3 mL), DCM (3 × 3 mL), and DMF (3 × 3 mL).

Polyproline C-terminus alkyne modification:

To the mixture of peptide acid, propargylamine (3 equiv.), and TEA (5 equiv.) dissolved in DMF/DCM (1:1, peptide concentration 10 mM) in a vial was added HATU (4 equiv.). After overnight stirring, DCM was removed from the reaction mixture under reduced pressure. The product was purified by HPLC with a Vydac C18 column.

Peptide assembly by CuAAC reaction on resins:

The azide-functionalized peptide on resins was treated in the solution of alkynyl peptide 4 (1.5 equiv.), CuSO₄ (aq) (0.13 equiv., 40 mM), tris(triazoly)amine ligand 5 (0.13 equiv., 40 mM in DMSO), sodium ascorbate (aq) (2.6 equiv., 800 mM), and iPr₂NEt (4.0 equiv.) in THF (final copper concentration is 3.6 mM) for 22 h. The resulted resins were washed with sodium diethyldithiocarbamate solution (25 mg in 5 mL DMF with 25 μL iPr₂NEt; 5 × 1 mL), DMF (5 × 1 mL), DCM (5 × 1 mL), and DMF (5 × 1 mL).

Peptide cyclization:

The linear peptide tetramer 7 was dissolved in water at 2 mM, and CuSO₄ (aq) (4.2 equiv., 40 mM), tris(triazoly)amine ligand 5 (4.2 equiv., 40 mM in DMSO), sodium ascorbate (aq) (84 equiv., 800 mM), and iPr₂NEt (144 equiv.) were added to react at room temperature for 1 h. The product was purified from crude reaction mixture by HPLC.
N-Alloc deprotection:

To the solution of Alloc protected cyclic peptide 8c and Pd(PPh₃)₂Cl₂ (3 equiv. for each Alloc group) in DCM/DMF (4:1, peptide concentration 40 mM) in a vial was added acetic acid (540 equiv.) and Bu₃SnH (240 equiv.) and stirred for 2 h before quenched by water. After removing DCM under reduced pressure, the deprotected peptide was purified by HPLC.

Alkyne group installation on scaffold:

To the solution of Alloc-deprotected amino peptide and 4-pentynoic acid OSu ester (30 equiv.) in DMF (peptide concentration 0.5 mM) in a vial was added iPr₂NEt (60 equiv.) and stirred for 2 h. The alkyne peptide product was purified from crude reaction mixture by HPLC.

Glycan conjugation to scaffold:

The alkyne scaffold peptide 11 dissolved in water at 1 mM was added CuSO₄ (aq) (30 equiv., 40 mM), tris(triazoly)amine ligand 5 (30 equiv., 40 mM in DMSO), sodium ascorbate (aq) (600 equiv., 800 mM), iPr₂NEt (200 equiv.), and the glycan ligand Man₄ or Man₃ (3 equiv. per alkyne) to react at room temperature for 1 h. The product was purified from crude reaction mixture by HPLC.
Synthesis of peptide monomers: peptide acids

Peptides S13 and S14 were prepared according to the method of solid phase peptide synthesis. Yields are based on quantitative Fmoc test and after lyophilization.

Peptide S13

![Peptide S13](image)

Figure S1. HPLC chromatogram of S13.

Yield: 49.1 mg, 49%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tR = 34.3 min.

MS(MALDI): [M+Na]^+ calcd. for C_{60}H_{75}N_9NaO_{12}: 1136.543, found: 1137.007.
Peptide S14

![Peptide S14 structure](image)

Figure S2. HPLC chromatogram of S14.

Yield: 309.1 mg, 50%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 35.7 min.

MS(MALDI): [M+Na]⁺ calcd. for C₆₄H₈₀N₁₀NaO₁₄: 1235.575, found: 1234.312.
Synthesis of peptide monomers: peptide alkynes

Peptide 4a and 4c were prepared according to the method of polyproline C-terminus alkyne modification.

Yields are based on the isolated weight after lyophilization.

Peptide 4a

![Peptide 4a structure](image)

Figure S3. HPLC chromatogram of 4a.

Yield: 110.5 mg, 82%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 36.3 min.

MS(MALDI): [M+H]⁺ calcd. for C₆₃H₇₉N₁₀O₁₁: 1151.592, found: 1151.102.
Peptide 4c

Figure S4. HPLC chromatogram of 4c.

Yield: 141.6 mg, 91%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; $t_R = 37.6$ min.

MS(MALDI): [M+Na]$^+$ calcd. for C$_{67}$H$_{83}$N$_{11}$NaO$_{13}$: 1272.606, found: 1272.023.
Synthesis of peptide oligomers: peptide acids

Peptide S15–S17 were prepared according to the method of solid phase peptide synthesis, polyproline N-terminus azido modification, peptide assembly by CuAAC reaction on resins. Yields are based on the isolated weight after lyophilization.

Peptide tetramer S15

Figure S5. HPLC chromatogram of S15.

Yield: 4.04 mg, 34%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; $t_R = 29.7$ min.

MS(MALDI): [M+H]$^+$ calcd. for $C_{197}H_{274}N_{51}O_{41}$: 4010.092, found: 4009.046.
Peptide tetramer S16

Figure S6. HPLC chromatogram of S16.

Yield: 9.03 mg, 52%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 32.8 min.

MS(MALDI): [M+K]⁺ calcd. for C₂₀₅H₂₈₉N₅₁KO₄₁: 4160.173, found: 4161.278.
Peptide tetramer S17

Figure S7. HPLC chromatogram of S17.

Yield: 23.06 mg, 45%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tr = 32.8 min.

MS(MALDI): [M+Na]^+ calcd. for C_{221}H_{309}N_{55}O_{49}: 4540.327, found: 4538.916.
Synthesis of peptide oligomers: peptide alkynes

Peptide 7a–7c were prepared according to the method of polyproline C-terminus alkyne modification.

Yields are based on the isolated weight after lyophilization.

Peptide tetramer 7a

Figure S8. HPLC chromatogram of 7a.

Yield: 3.26 mg, 80%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tR = 30.2 min.

MS(MALDI): [M+H]+ calcd. for C_{200}H_{277}N_{52}O_{40}: 4047.123, found: 4046.195.
Peptide tetramer 7b

Figure S9. HPLC chromatogram of 7b.

Yield: 2.33 mg, 91%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 32.5 min.

MS(MALDI): [M+K]^+ calcd. for C_{208}H_{292}N_{52}K_{40}: 4197.205, found: 4197.240.
Peptide tetramer 7c

Figure S10. HPLC chromatogram of 7c.

Yield: 14.26 mg, 61%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tR = 33.0 min.

MS(MALDI): [M+H]+ calcd. for C_{224}H_{313}N_{56}O_{48}: 4555.377, found: 4555.828.
Synthesis of peptide oligomers: cyclic peptides

Peptide 8a–8c were prepared according to the method of peptide cyclization. Yields are based on the isolated weight after lyophilization.

Cyclic peptide tetramer 8a

![Cyclic peptide tetramer 8a](image)

Figure S11. HPLC chromatogram of 8a.

Yield: 0.65 mg, 43%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tR = 33.5 min.

Cyclic peptide tetramer 8b

Figure S12. HPLC chromatogram of 8b.

Yield: 1.25 mg, 29%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tR = 34.2 min.

MS(MALDI): [M+H]+ calcd. for C_{208}H_{293}N_{52}O_{40}: 4159.249, found: 4158.433.
Cyclic peptide tetramer 8c

Figure S13. HPLC chromatogram of 8c.

Yield: 2.44 mg, 48%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 34.0 min.

MS(MALDI): [M+K]^+ calcd. for C_{224}H_{312}N_{56}KO_{48}: 4593.333, found: 4593.893.
Synthesis of peptide oligomers: deprotected cyclic peptide

Peptide S18 was prepared according to the method of N-Alloc deprotection. Yield is based on the isolated weight after lyophilization.

Deprotected cyclic peptide tetramer S18

![Deprotected cyclic peptide tetramer S18](image)

Figure S14. HPLC chromatogram of S18.

Yield: 2.01 mg, 48%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; tR = 22.5 min.

MS(MALDI): [M+H]⁺ calcd. for C_{208}H_{297}N_{56}O_{40}: 4219.292, found: 4219.984.
Synthesis of peptide oligomers: alkynyl cyclic peptide

Peptide 11 was prepared according to the method of alkyne group installation on scaffold. Yield is based on the isolated weight after lyophilization.

Alkynyl cyclic peptide tetramer 11

Figure S15. HPLC chromatogram of 11.

Yield: 1.83 mg, 85%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; \(t_R = 30.9 \) min.

MS(MALDI): \([\text{M+Na}]^+\) calcd. for \(\text{C}_{228}\text{H}_{312}\text{N}_{56}\text{O}_{44} \): 4561.379, found: 4562.115.
Synthesis of peptide oligomers: glycoconjugates

Glycoconjugate 12 and 13 were prepared according to the method of glycan conjugation to scaffold.

Yields are based on the isolated weight after lyophilization.

Glycoconjugate 12

![Diagram of Glycoconjugate 12]

Figure S16. HPLC chromatogram of 12.

Yield: 0.66 mg, 61%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 23.9 min.

MS(MALDI): [M+K]^+ calcd. for C_{344}H_{516}N_{68}KO_{128}: 7686.559, found: 7686.405.
Glycoconjugate 13

Figure S17. HPLC chromatogram of 13.

Yield: 0.22 mg, 50%.

Analytical HPLC: 5% to 90% acetonitrile in water (0.1% TFA) over 60 min, 0.5 mL/min; t_R = 23.0 min.

MS(MALDI): [M+K]^+ calcd. for C_{308}H_{452}N_{68}KO_{108}: 6870.160, found: 6870.227.
Figure S18. 1H NMR of 8b in D$_2$O; the inset shows the triazole proton signal as singlet.
Circular dichroism spectra of 7 and 8

Figure S19. The circular dichroism spectra at far UV range of 7 in water.

Figure S20. The circular dichroism spectra at far UV range of 8 in water.
4. Expression and Purification of Target Lectins

Langerin extracellular domain (Lg-ECD)10

DNA coding for langerin extracellular domain from residue 68 to 328 was synthesis and clone into NdeI and BamHI restriction sites of vector pET30b by Genomics. The plasmid of Lg-ECD in vector pET30b was transformed into \textit{E. coli} BL21(DE3) competent cells. A 5 mL overnight culture of \textit{E. coli} arraying the recombinant plasmid was grown in Luria-Bertani medium containing 50 µg/mL kanamycin at 37 °C. This culture was diluted into 1 L LB medium containing 100 µg/mL kanamycin and shake 220 rpm at 37 °C until the OD\textsubscript{600} reached 0.7. Protein expression was induced by adding IPTG to a final concentration of 0.3 mM, and shaking vigorously at 37 °C for 3 h. The \textit{E. coli} was harvested by centrifugation at 4 °C and 6000 × g for 20 min. The cell pellet was incubated in -20 °C overnight, then suspended in 15 mL buffer A (25 mM Tris, 150 mM NaCl, 4 mM CaCl\textsubscript{2}, pH 7.8) containing 0.1 mM PMSF and sonicated at 5 s intervals under ice bath for 3 min. The lysate was centrifuged at 4 °C and 10000 × g for 20 min and the pellet was collected. The inclusion body dissolved under briefly sonication at 4 °C in 15 mL buffer B (6 N guanidine, 100 mM Tris, 0.01% β-mercaptoethanol, pH 7.0) for 30 min. The solution of denatured protein was centrifuged at 4 °C and 40000 × g for 1 h, and the supernatant was diluted 3-fold with buffer A by slow addition with stirring. The mixture was dialysis against buffer A with four buffer changes, and the precipitate was removed by centrifugation at 4 °C and 40000 × g for 2 h. The supernatant was loading into 3 mL mannose-Sepharose® column, which had been equilibrium
with buffer A. The column was washed by 20 mL buffer A, and the Lg-ECD was eluted by buffer C (25 mM Tris, 150 mM NaCl, 10 mM EDTA, pH 7.8) and analyzed by SDS-PAGE (10%). The protein was stored at 4 °C. The protein concentration was determined by UV 280 nm.

Figure S21. SDS-PAGE analysis of components during purification of LgECD by affinity column. Every washing and elution fraction is shown.

![SDS-PAGE analysis of components during purification of LgECD by affinity column. Every washing and elution fraction is shown.](image)

Figure S22. Analytical ultracentrifuge (AUC) result of trimeric LgECD. The original data (black line) and fitting data via the nonlinear least-squares fitting (NLSF) utility of Origin (red line) are shown.
DC-SIGN extracellular domain (DC-ECD)

DNA coding for DC-SIGN extracellular domain from residue 62 to 404 was synthesis and clone into BamHI and XhoI restriction sites of vector pT5T by Genomics. The plasmid of DC-ECD in vector pT5T was transformed into *E. coli* BL21(DE3) competent cells. A 5 mL overnight culture of *E. coli* carrying the recombinant plasmid was grown in Luria-Bertani medium containing 100 µg/mL ampicillin at 37 °C. This culture was diluted into 1 L LB medium containing 100 µg/mL ampicillin and shake 220 rpm at 37 °C until the OD$_{600}$ reached 0.7. Protein expression was induced by adding IPTG to a final concentration of 0.3 mM, and shaking vigorously at 37 °C for 3 h. The *E. coli* was harvested by centrifugation at 4 °C and 6000 × g for 20 min. The cell pellet was incubated in -20 °C overnight, then suspended in 15 mL buffer A (25 mM Tris, 150 mM NaCl, 4 mM CaCl$_2$, pH 7.8) containing 0.1 mM PMSF and sonicated at 5 s intervals under ice bath for 3 min. The lysate was centrifuged at 4 °C and 10000 × g for 20 min and the pellet was collected. The inclusion body dissolved by briefly sonication at 4 °C in 15 mL buffer C (6 N guanidine, 100 mM Tris, 0.01% β-mercaptoethanol, pH 7.0) for 30 min. The solution of denatured protein was centrifuged at 4 °C and 40000 × g for 1 h, and the supernatant was diluted 5-fold with buffer A by slow addition with stirring. The mixture was dialysis against buffer A with four buffer changes, and the precipitate was removed by centrifugation at 4 °C and 40000 × g for 2 h. The supernatant was loading into 1 mL mannose-Sepharose® column, which had been equilibrated with buffer A. The column was washed by 10 mL buffer A, and the DC-ECD was eluted by buffer C (25
mM Tris, 150 mM NaCl, 10 mM EDTA, pH 7.8) and analyzed by SDS-PAGE (10%). The protein was stored at 4 °C. The protein concentration was determined by UV 280 nm.

Figure S23. SDS-PAGE analysis of components during purification of DC-ECD by affinity column. Every washing and elution fraction is shown.

Figure S24. Analytical ultracentrifuge (AUC) result of tetrameric DC-SIGN. The original data (black line) and fitting data via the nonlinear least-squares fitting (NLSF) utility of Origin (red line) are shown.
5. Surface Plasmon Resonance Assay

Material

Sensor chip CM5 (Product Code BR100530) for surface plasmon resonance experiment was purchased from GE Healthcare.

Method

Surface plasmon resonance (SPR) experiments were performed on Biacore T100 or T200 at 25 °C using a functionalized CM5 sensor chip. Protein immobilization was performed according to the build-in wizard software template of the instrument. The CM5 sensor chip was activated with a solution containing N-ethyl-N‘-(3-diethyl-aminopropyl)-carbodiimide (EDC) (0.2 M) and N-hydroxysuccinimide (NHS) (0.05 M). Then langerin ECD (10 µg/mL) in acetate buffer (pH 5.5, 10 mM) or DC-SIGN ECD (100 µg/mL) in acetate buffer (pH 3.5, 10 mM) was injected over the activated surface at a flow rate of 10 µL/min for 900 s. Then ethanolamine (pH 8.5, 1 M) was injected to block the remaining activated groups. Binding assays were performed with running buffer (25 mM Tris, 150 mM NaCl, 4 mM CaCl₂, 0.005% Tween 20, pH 7.8). Glycodendrimers 9, 10 or glycoconjugates 12, 13 were injected onto the surface, with several concentrations ranging from 400 nM to 6400 nM for 9, 100 nM to 1600 nM for 10, 4000 nM to 64000 nM for 12, and 400 nM to 6400 nM for 13 langerin ECD or from 400 nM to 6400 nM for 9, 0.625 nM to 10 nM for 10, 6.25 nM to 100 nM for 12, 400 nM to 6400 nM for 13, 6.25 nM to 100 nM for 8b, and 62500 nM to 1000000 nM for Man₄ to DC-SIGN ECD at the rate of 10 µL/min diluted
in the running buffer. The surface was regenerated by 60 s injection of regeneration buffer (25 mM Tris, 150 mM NaCl, 10 mM EDTA, pH 7.8). The sensorgrams were reference subtracted, quality controlled and analyzed by Biacore T200 Evaluation Software, and the kinetic parameters were obtained by fitting curves to 1:1 Langmuir model.

Sensorgrams

![Sensorgram of 9 binding to a langerin sensorchip (Concentration = 400, 800, 1600, 3200 and 6400 nM).](image1)

Figure S25. Sensorgram of 9 binding to a langerin sensorchip (Concentration = 400, 800, 1600, 3200 and 6400 nM).

![Sensorgram of 10 binding to a langerin sensorchip (Concentration = 100, 200, 400, 800 and 1600 nM).](image2)

Figure S26. Sensorgram of 10 binding to a langerin sensorchip (Concentration = 100, 200, 400, 800 and 1600 nM).
Figure S27. Sensorgram of 12 binding to a langerin sensorchip (Concentration = 4000, 8000, 16000, 32000 and 64000 nM).

Figure S28. Sensorgram of 13 binding to a langerin sensorchip (Concentration = 400, 800, 1600, 3200 and 6400 nM).

Figure S29. Sensorgram of 9 binding to a DC-SIGN sensorchip (Concentration = 400, 800, 1600, 3200 and 6400 nM).
Figure S30. Sensorgram of 10 binding to a DC-SIGN sensorchip (Concentration = 0.625, 1.25, 2.5, 5 and 10 nM).

Figure S31. Sensorgram of 12 binding to a DC-SIGN sensorchip (Concentration = 6.25, 12.5, 25, 50 and 100 nM).

Figure S32. Sensorgram of 13 binding to a DC-SIGN sensorchip (Concentration = 400, 800, 1600, 3200 and 6400 nM).
Figure S33. Sensorgram of 8b binding to a DC-SIGN sensorchip showing no binding activity at the same concentrations for measurement of 12 (Concentration = 6.25, 12.5, 25, 50 and 100 nM).

Figure S34. Sensorgram of Man₄ binding to a DC-SIGN sensorchip showing very weak interaction that the K_D cannot be determined within instrument limitation (Concentration = 62500, 125000, 250000, 500000 and 100000 nM).
References

$\text{H NMR spectra of } S_1 \text{ (400 MHz, CDCl}_3\text{)}$
1H NMR spectra of S2 (400 MHz, CDCl$_3$)
1H NMR spectra of S4 (400 MHz, CDCl$_3$)
S-49

1H NMR spectra of S5 (400 MHz, CD$_3$OD)
13C NMR spectra of S5 (100.7 MHz, CD3OD)
^{1}H NMR spectra of S6 (400 MHz, CDCl$_3$)
1H NMR spectra of S7 (400 MHz, CD$_3$OD)
1H NMR spectra of S9 (400 MHz, CDCl$_3$)
13C NMR spectra of S9 (100.7 MHz, CDCl3)
1H NMR spectra of S10 (400 MHz, CD$_3$OD)
13C NMR spectra of S10 (100.7 MHz, CD$_3$OD)
1H NMR spectra of S11 (400 MHz, CD$_3$OD)
13C NMR spectra of S11 (100.7 MHz, CD$_3$OD)
1H NMR spectra of S12 (400 MHz, CD$_3$OD)
13C NMR spectra of S12 (100.7 MHz, CD₃OD)
1H NMR spectra of Man₃ (400 MHz, D₂O)
1H NMR spectra of Man$_4$ (400 MHz, D$_2$O)