Supporting Information

Hypervalent iodine initiated intramolecular alkene dimerisation: a stereodivergent entry to cyclobutanes

Yuxiang Zhu,‡ Ignacio Colomer,† and Timothy J. Donohoe

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA (UK)

E-mail: timothy.donohoe@chem.ox.ac.uk

† These authors contributed equally.
Table of Contents

<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)-S1c</td>
<td>1H NMR and 13C NMR</td>
<td>S4</td>
</tr>
<tr>
<td>(E)-1a</td>
<td>1H NMR and 13C NMR</td>
<td>S6</td>
</tr>
<tr>
<td>(E)-1b</td>
<td>1H NMR and 13C NMR</td>
<td>S8</td>
</tr>
<tr>
<td>(E)-1c</td>
<td>1H NMR and 13C NMR</td>
<td>S10</td>
</tr>
<tr>
<td>(E)-1e</td>
<td>1H NMR and 13C NMR</td>
<td>S12</td>
</tr>
<tr>
<td>(E)-1j</td>
<td>1H NMR and 13C NMR</td>
<td>S14</td>
</tr>
<tr>
<td>(E)-1k</td>
<td>1H NMR and 13C NMR</td>
<td>S16</td>
</tr>
<tr>
<td>(E)-1l</td>
<td>1H NMR and 13C NMR</td>
<td>S18</td>
</tr>
<tr>
<td>(E)-1m</td>
<td>1H NMR and 13C NMR</td>
<td>S20</td>
</tr>
<tr>
<td>(E)-1d</td>
<td>1H NMR and 13C NMR</td>
<td>S22</td>
</tr>
<tr>
<td>(E)-1f</td>
<td>1H NMR and 13C NMR</td>
<td>S24</td>
</tr>
<tr>
<td>(E)-1g</td>
<td>1H NMR and 13C NMR</td>
<td>S26</td>
</tr>
<tr>
<td>(E)-1h</td>
<td>1H NMR and 13C NMR</td>
<td>S28</td>
</tr>
<tr>
<td>(E)-1i</td>
<td>1H NMR and 13C NMR</td>
<td>S30</td>
</tr>
<tr>
<td>(E)-1n</td>
<td>1H NMR and 13C NMR</td>
<td>S32</td>
</tr>
<tr>
<td>4c</td>
<td>1H NMR and 13C NMR</td>
<td>S34</td>
</tr>
<tr>
<td>4d</td>
<td>1H NMR and 13C NMR</td>
<td>S36</td>
</tr>
<tr>
<td>4e</td>
<td>1H NMR and 13C NMR</td>
<td>S38</td>
</tr>
<tr>
<td>4g</td>
<td>1H NMR and 13C NMR</td>
<td>S40</td>
</tr>
<tr>
<td>2a</td>
<td>1H NMR and 13C NMR</td>
<td>S42</td>
</tr>
<tr>
<td>2b</td>
<td>1H NMR and 13C NMR</td>
<td>S44</td>
</tr>
<tr>
<td>2c</td>
<td>1H NMR and 13C NMR</td>
<td>S46</td>
</tr>
<tr>
<td>2d</td>
<td>1H NMR and 13C NMR</td>
<td>S48</td>
</tr>
<tr>
<td>2e and 3e</td>
<td>1H NMR and 13C NMR</td>
<td>S50</td>
</tr>
<tr>
<td>2f</td>
<td>1H NMR and 13C NMR</td>
<td>S52</td>
</tr>
<tr>
<td>2g:3g</td>
<td>1H NMR, 13C NMR</td>
<td>S54</td>
</tr>
<tr>
<td>3h:3h</td>
<td>1H NMR, 13C NMR, COSY, HSQC and NOESY-2D</td>
<td>S56</td>
</tr>
<tr>
<td>2i:3i</td>
<td>1H NMR and 13C NMR</td>
<td>S61</td>
</tr>
<tr>
<td>2j</td>
<td>1H NMR and 13C NMR</td>
<td>S63</td>
</tr>
<tr>
<td>3j</td>
<td>1H NMR and 13C NMR</td>
<td>S65</td>
</tr>
<tr>
<td>2k</td>
<td>1H NMR and 13C NMR</td>
<td>S67</td>
</tr>
<tr>
<td>3k</td>
<td>1H NMR and 13C NMR, COSY, HSQC and NOESY-2D</td>
<td>S69</td>
</tr>
</tbody>
</table>
Compound 2l: 3l: 1H NMR and 13C NMR

Compound 2m: 1H NMR and 13C NMR

Compound 3m: 1H NMR and 13C NMR

Compounds 2n: 3n: 1H NMR and 13C NMR

Compound 5c: 1H NMR and 13C NMR

Compound 5d: 1H NMR and 13C NMR

Compound 5e: 1H NMR and 13C NMR

Compound 5g: 1H NMR and 13C NMR, COSY, HSQC and NOESY-2D

Compound 6a: 1H NMR and 13C NMR

Compound 6b: 1H NMR and 13C NMR

Compound 7a: 1H NMR and 13C NMR

Compound 8a: 1H NMR and 13C NMR, COSY, HSQC and NOESY-2D

Compound 8b: 1H NMR and 13C NMR

Compound 8c: 1H NMR and 13C NMR, COSY, HSQC and NOESY-2D

Compound 8d: 1H NMR and 13C NMR
$\text{^{1}H NMR (400 MHz, CDCl}_3$)
$^{13}\text{C} \text{NMR} \ (100 \text{ MHz}, \text{CDCl}_3)$

Me

S1c

$\begin{align*}
\text{Me} & \quad 4 \\
\text{OAc} & \quad 3 \\
\text{H} & \quad 2 \\
\text{H} & \quad 1
\end{align*}$
1H NMR (400 MHz, CDCl$_3$)

1a

MeO

H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

![Chemical structure with NMR spectrum](image)

- 158.86 ppm
- 131.18 ppm
- 130.64 ppm
- 129.21 ppm
- 124.39 ppm
- 114.02 ppm
- 77.48 ppm (CDCl$_3$)
- 77.16 ppm (CDCl$_3$)
- 76.84 ppm (CDCl$_3$)
- 62.95 ppm
- 55.40 ppm
- 38.74 ppm
- 17.53 ppm
- 12.28 ppm
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

MeO-\(\text{C}_6\text{H}_4\)\(\text{O-Si-O}\)\(\text{C}_6\text{H}_4\)-OMe

1j
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

1k
13C NMR (100 MHz, CDCl$_3$)

1k

MeO-Ph-Ph-Ph-Ph-Me

13C NMR (100 MHz, CDCl$_3$)

1k

MeO-Ph-Ph-Ph-Ph-Me
1H NMR (400 MHz, CDCl$_3$)

MeO

Ph

O-Si-O

11

1.98

2.06

3.73

4.13

4.54

6.37

7.46

7.44

7.43

7.75

7.74

7.73

8.19

8.17

8.16

8.15

8.14
13C NMR (100 MHz, CDCl$_3$)

![Compound Structure]

1 I

Peak Frequencies (ppm):
- 198.25
- 135.11
- 132.79
- 130.52
- 130.31
- 128.81
- 128.05
- 127.58
- 127.29
- 126.01
- 114.04
- 84.31
- 55.41

Chemical Shift Values:
- 77.48 CDCl$_3$
- 77.18 CDCl$_3$
- 76.34 CDCl$_3$
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

![Chemical Structure](image)

$1m$
^H NMR (400 MHz, CDCl\textsubscript{3})

\[\text{Structure Image}\]
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

MeO

1g

i-Pr

O

Si

O

i-Pr

3

2

1

4

5

6

7

Me
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

![Chemical Structure](image)

1h
13C NMR (100 MHz, CDCl$_3$)

![Chemical Structure Image]

S31
13C NMR (100 MHz, CDCl$_3$)

1n
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

$4c$
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

MeO

4d
MeO

Me

1H NMR (500 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

MeO

[Diagram of a chemical structure with peaks labeled]
13C NMR (125 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
$\text{Si} - i$-Pr i-Pr MeO OMe

13C NMR (100 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

t-Bu, t-Bu

MeO

OMe

2b
13C NMR (100 MHz, CDCl$_3$)

\[
\text{MeO} \quad 2c \quad \text{OMe}
\]
1H NMR (400 MHz, CDCl$_3$)

![NMR Spectrogram]
\(^{13}\)C NMR (100 MHz, CDCl\(_3\))

![Chemical Structure](image)

Chemical Shifts (ppm):
- 77.41 (CDCl\(_3\))
- 76.31 (CDCl\(_3\))
- 62.58
- 62.55
- 55.41
- 52.12
- 44.39
- 44.16
- 38.13
- 38.79
- 21.17
- 17.17
- 17.81
- 12.07

Assignments:
- 1: 158.17
- 2: 140.81
- 3: 139.05
- 4: 135.60
- 5: 129.18
- 6: 127.99
- 7: 126.93
- 8: 113.89
13C NMR (125 MHz, CDCl$_3$)

dr 4:1
1H NMR (500 MHz, CDCl$_3$)

![NMR spectrum]
13C NMR (125 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

dr 1:1.7
13C NMR (125 MHz, CDCl$_3$)

\[\text{dr 1:1.7} \]

[Chemical structures and spectral data]
$^{1}{\text{H}}$ (500 MHz) - ^{13}C (125 MHz) HSQC (CDCl$_3$)

dr 1:1.7
NOESY-2D (500 MHz, CDCl₃)

2h

3h
de 1:1.7
1H NMR (500 MHz, CDCl$_3$)

MeO^2i + MeO^3i

$\text{dr} \ 1:1.5$
13C NMR (125 MHz, CDCl$_3$)

2i + 3i

dr 1:1.5

MeO

Me
1H NMR (400 MHz, CDCl$_3$)

2j
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

3j

MeO

OMe
13C NMR (100 MHz, CDCl$_3$)

3j
13C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

[Chemical structure image with peaks labeled]
13C NMR (100 MHz, CDCl$_3$)
$^{1}H - ^{1}H$ COSY - 90 (400 MHz, CDCl$_3$)
$\text{H (400 MHz) - } ^{13}\text{C (100 MHz) HSQC (CDCl}_3\text{)}$
NOESY-2D (400 MHz, CDCl₃)

3k
1H NMR (500 MHz, CDCl$_3$)

2I

3I

dr 1:2

S74
13C NMR (125 MHz, CDCl$_3$)

![Chemical structure diagram]

- Ph$_5$Si$^-$O$_3$
- Ph$_5$Si$^-$O$_3$
- MeO
- OMe

2I + **3I**
dr 1:2

<table>
<thead>
<tr>
<th>Chemical Bond</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>170</td>
</tr>
<tr>
<td>8</td>
<td>180</td>
</tr>
</tbody>
</table>

S75
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

dr 1:4
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

![Chemical structure](image)

Resonance Frequencies (ppm)

- 157.73
- 140.14
- 132.67
- 130.90
- 128.91
- 123.14
- 119.52
- 113.45
- 77.48 (dec)
- 77.16 (dec)
- 76.84 (dec)
- 74.08
- 73.99
- 52.28
- 46.73
- 46.48
- 42.62
- 42.27

Chemical Groups

- MeO
- Br
- 5c
1H NMR (400 MHz, CDCl$_3$)
1C NMR (100 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)
13C NMR (100 MHz, CDCl$_3$)

MeO

Me

13C NMR (100 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

MeO

5g
$^1\text{H} - ^1\text{H COSY} - 90$ (500 MHz, CDCl$_3$)
1H (500 MHz) - 13C (125 MHz) HSQC (CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
^{1}H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

[Chemical structure diagram]

Chemical shifts:
- 158.41
- 134.63
- 127.91
- 114.02
- 77.48 (CDCl$_3$)
- 77.16 (CDCl$_3$
- 76.34 (CDCl$_3$
- 65.80
- 55.42
- 47.84
- 47.28
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

![NMR spectrum of compound 8a]
13C NMR (125 MHz, CDCl$_3$)
1H - 1H COSY - 90 (500 MHz, CDCl$_3$)
NOESY-2D (500 MHz, CDCl\textsubscript{3})

\text{MeO}

8a
1H NMR (500 MHz, CDCl$_3$)

8b
13C NMR (125 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)
$^1H - ^1H \text{ COSY - 90 (500 MHz, CDCl}_3\text{)}$
1H (500 MHz) · 13C (125 MHz) HSQC (CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

![Chemical Structure](image)