## **Electronic Supplementary Information**

for

## An Anionic Heterosiliconoid with two Germanium Vertices

Lukas Klemmer,<sup>a</sup> Volker Huch,<sup>a</sup> Anukul Jana<sup>b</sup> and David Scheschkewitz<sup>\*a</sup>

<sup>a.</sup> Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany. E-mail: scheschkewitz@mx.uni-saarland.de
<sup>b.</sup> Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.

| Content                                                                               | S1  |
|---------------------------------------------------------------------------------------|-----|
| Experimental Details and Analytical Data                                              | S2  |
| Molecular structures of minor isomers of $2Li$ ·(THF) <sub>2</sub> and $2[Li(DME)_3]$ | S15 |
| Crystallographic data and structure refinement                                        | S17 |
| Theoretical Details and Optimized Structures                                          | S19 |
| Reference                                                                             | S27 |

## **Experimental Details and Analytical Data**

### **General Considerations**

All reactions were carried out under a protective argon atmosphere using Schlenk techniques or a gloveboxe. *n*-Pentane, benzene, and 1,2-dimethoxyethane (DME) were refluxed with sodium/benzophenone and distilled prior to use under argon. n-Hexane, toluene, diethyl ether (Et<sub>2</sub>O), and tetrahydrofuran (THF) were taken directly from a solvent purification system (Innovative Technology PureSolv MD7). Deuterated benzene was refluxed over potassium and distilled prior to use under argon. Deuterated THF-d<sub>8</sub> was refluxed over Na/K alloy and condensed in vacuo. NMR spectra were recorded at 300 K on a Bruker Avance III 300 (<sup>1</sup>H: 300.13 MHz, <sup>7</sup>Li{<sup>1</sup>H}: 116.59 MHz, <sup>29</sup>Si{<sup>1</sup>H}: 59.6 MHz) and a Bruker Avance III HD 400 (<sup>1</sup>H: 400.13 MHz, <sup>13</sup>C{<sup>1</sup>H}: 100.61 MHz <sup>29</sup>Si{<sup>1</sup>H}: 79.5 MHz). <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, and <sup>29</sup>Si{<sup>1</sup>H} chemical shifts are reported relative to SiMe<sub>4</sub>. <sup>7</sup>Li<sup>1</sup>H} chemical shift was referenced to aqueous solution of LiCI. Solid state CP/MAS NMR spectra were measured on a Bruker AV400WB spectrometer. Powdered samples were packed in a 4 mm o.d. zirconia rotor. Diameter of the Probe is 89 mm with spinning speed of 13 KHz. <sup>29</sup>Si{<sup>1</sup>H} CP MAS experiment was performed using <sup>1</sup>H 90° pulse for 3.3 µs, with contact time 5 ms, CPD Spinal64 as decoupling scheme, and a recycle delay of 3 s. UV/vis spectra were acquired on a Shimadzu UV-2600 or a PerkinElmer Lambda 35 spectrometer using guartz cells with a path length of 1 mm. Silicon tetrachloride was boiled over magnesium and distilled prior to use under argon. Lithium/naphthalene was freshly prepared from lithium granules and naphthalene prior to use. 1,3,3,4,6,6hexakis(2,4,6-triisopropylphenyl)-1,3,4,6-tetrasila-2,5-digerma-tricyclo[3.1.0.0<sup>2,4</sup>]hexane-2,5-diyl 1 was synthesized according to our published procedure.<sup>S1</sup>

# Synthesis of 2,2,4,5,5-pentakis(2,4,6-triisopropylphenyl)-1,2,4,5-tetrasila-3,6-digermatetracyclo[ $2.2.0.0^{1,3}.0^{3,6}$ ]hexan-6-yllithium 2Li·(THF)<sub>2</sub>

At -80 °C, a solution of Li/C<sub>10</sub>H<sub>8</sub> in THF (1.0 mL, 1.06 M, 2.2 eq.) is added dropwise to a suspension of dismutational Si<sub>4</sub>Ge<sub>2</sub> isomer **1** (766 mg, 0.23 mmol) in 15 mL of dry Et<sub>2</sub>O and the resulting blue-green reaction mixture is stirred for 1 hour at -80 °C before thawing up to room temperature overnight. The reaction mixture is dried *in vacuo* and the resulting solid extracted with 30 mL of benzene. The filtrate is dried *in vacuo* once again to give a bright orange solid, which is freed from naphthalene *in vacuo* at 65°C for 2 hours. The remaining solid is dissolved in about 15 mL of *n*hexane and concentrated to about 5 mL. After storing the resulting solution overnight at 0°C, anionic siliconoid **2Li**·(THF)<sub>2</sub> is isolated as orange block-shaped single crystals.

#### Yield: 369 mg (47%).

<sup>1</sup>**H NMR** (400.13 MHz, 300 K, benzene-*d*<sub>6</sub>, TMS): Due to the presence of two rotamers in solution (61:39) and solid state (64:36), two overlapping sets of signals arise. A detailed integration and assignment of the signals was therefore not possible.  $\delta$  = 7.30, 7.29 (each broad s, partially overlapping, altogether 1H, Tip-*H*), 7.13-7.06

(m, 3H, Tip-*H*), 7.00-6.89 (s & br, partially overlapping, altogether 4H, Tip-*H*), 6.85, 6.83, 6.82, 6.80 (each broad s, partially overlapping, altogether 2H, Tip-*H*), 5.88, 5.69 (each sept., altogether 1H, Tip-<sup>*i*</sup>Pr-C*H*), 5.31, 5.25 (sept., overlapping, altogether 1H, Tip-<sup>*i*</sup>Pr-C*H*), 4.99, 4.92, 4.81 (each sept., partially overlapping, altogether 2H, Tip-<sup>*i*</sup>Pr-C*H*), 4.44-4.30 (m, 1H, Tip-<sup>*i*</sup>Pr-C*H*), 3.90, 3.81 (each broad sept., altogether 3H, Tip-<sup>*i*</sup>Pr-C*H*), 3.40-3.30 (m, 1H, Tip-<sup>*i*</sup>Pr-CH), 3.26 (m, 8H, thf-O-C*H*<sub>2</sub>), 2.91-2.59 (m, 6H, Tip-<sup>*i*</sup>Pr-C*H*), 2.18, 2.10 (each d, altogether 3H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>), 2.06, 2.01 (each d, altogether 3H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>), 1.56-1.50 (m, 8H, thf-C*H*<sub>2</sub>), 1.33-1.03 (m, overlapping with hexane signals, 51H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>), 0.86-0.80 (m, 6H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>), 0.50-0.36 (m, 12H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>), 0.32-0.27 (m, 3H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>) ppm.

<sup>7</sup>Li{<sup>1</sup>H} NMR (116.59 MHz, 300 K, benzene- $d_6$ , Li<sup>+</sup> aq):  $\delta$  = 2.16 (br), -1.00, -1.34 ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (100.61 MHz, 300 K, benzene-*d*<sub>6</sub>, TMS): δ = 155.63, 155.55, 154.62, 154.44, 154.36, 154.14, 153.72, 153.44, 153.17, 153.14, 152.74, 152.39, 152.14, 151.65, 151.60, 151.25, 150.29, 150.01, 149.52, 149.49, 149.42, 149.17, 148.73, 147.94, 147.84, 147.81, 147.54, 144.69, 143.86, 141.55, 141.08, 140.87, 140.59, 140.20, 138.79, 138.67, 138.24, 133.68 (Tip-Ar-CH), 133.68, 125.69 (C<sub>10</sub>H<sub>8</sub>), 123.69, 123.43, 121.98, 122.54, 122.20, 122.12, 122.03, 121.86, 121.81, 121.71, 121.39, 121.21, 120.69, 120.53 (Tip-Ar-CH), 68.61 (thf-CH<sub>2</sub>-O), 35.91, 35.62, 35.24, 34.91, 34.56, 34.43, 34.40, 34.22, 34.16, 34.06, 33.98, 33.83, 33.74, 33.69, 33.21, 33.07, 31.59 (Tip-<sup>/</sup>Pr-CH), 29.63, 29.39, 28.21, 28.19, 27.94, 27.62, 27.37, 27.25, 26.99, 25.83, 25.79 (Tip-<sup>/</sup>Pr-CH & Tip-<sup>/</sup>Pr-CH<sub>3</sub>), 24.81 (thf-CH<sub>2</sub>), 24.43, 24.30, 24.22, 24.15, 24.09, 24.03, 23.96, 23.87, 23.84, 23.80, 23.74, 23.67, 23.64, 23.44, 23.36, 23.34, 23.25, 23.22, 23.08, 22.94, 22.68, 22.14, 22.11, 13.99 (Tip-<sup>/</sup>Pr-CH<sub>3</sub>) ppm.

<sup>29</sup>Si{<sup>1</sup>H} NMR (79.5 MHz, 300 K, benzene- $d_6$ , TMS): Due to the presence of two rotamers in solution two sets of signals arise which are assigned according to their distinct intensities. Major rotamer:  $\delta$  = 172.8 (s, privo-Si), 60.9 (s, ligato-Si), 7.4 (s, remoto-Si), -182.6 (s, nudo-Si) ppm. Minor rotamer:  $\delta$  = 168.5 (s, privo-Si), 65.4 (s, ligato-Si), 9.2 (s, remoto-Si), -177.8 (s, nudo-Si) ppm. **m.p.**: 156°C (no decomposition).



**Figure S2:** <sup>7</sup>Li{<sup>1</sup>H} NMR spectrum of **2Li**·(THF)<sub>2</sub> in [D<sub>6</sub>]-benzene at 300 K.



**Figure S4:** <sup>29</sup>Si $\{^{1}H\}$  NMR spectrum of **2Li**·(THF)<sub>2</sub> in [D<sub>6</sub>]-benzene at 300 K.

# Synthesis of 2,2,4,5,5-pentakis(2,4,6-triisopropylphenyl)-1,2,4,5-tetrasila-3,6-digermatetracyclo[ $2.2.0.0^{1,3}.0^{3,6}$ ]hexan-6-yllithium 2[Li(DME)<sub>3</sub>]

a) **2Li**·(THF)<sub>2</sub> (201.6 mg, 0.14 mmol) is dissolved in 3 mL of dry dme and then dried *in vacuo* for 1 hour. This dissolving-drying cycle is repeated two more times before 5 mL of dry hexane are added to the remaining dark red sticky solid. Drying once more *in vacuo* affords **2**[Li(DME)<sub>3</sub>] in quantitative yield as dark red powder.

b) At -80 °C a solution of Li/C<sub>10</sub>H<sub>8</sub> in thf (0.48 mL, 0.92 M, 2.2 eq.) is added dropwise to a suspension of dismutational isomer **1** (289 mg, 0.20 mmol) in 5 mL of dry Et<sub>2</sub>O and the resulting blue-green reaction mixture is stirred for 1 hour at -80 °C before thawing up to room temperature overnight. After that all the volatilities are removed *in vacuo*. The resulting solid is extracted with 10 mL benzene and the filtrate is dried. Subsequently the obtained solid is dissolved in 1 mL of dme and then dried again. This dissolving-drying cycle is repeated two more times before 4 mL of *n*-hexane are added. Storage of the resulting solution at 0 °C overnight leads to the formation of **2**[Li(DME)<sub>3</sub>] as dark red, block-shaped single crystals of X-Ray quality. **Yield:** 201 mg (64%).

<sup>1</sup>H NMR (400.13 MHz, 300 K, thf-*d*<sub>8</sub>, TMS): Due to the presence of two rotamers in solution (56:44) and solid state (55:45), two overlapping sets of signals arise. A detailed integration and assignment of the signals was therefore not possible.  $\delta$  = 6.97, 6.96 (each broad s, partially overlapping, altogether 1H, Tip-*H*), 6.87 (broad s, 2H, Tip-*H*), 6.74, 6.72, 6.71, 6.69 (each broad s, partially overlapping, altogether 3H, Tip-*H*), 6.60 (broad s, 4H, Tip-*H*), 5.96-5.63 (m, 1H, Tip-<sup>/</sup>Pr-C*H*), 5.24-5.00 (m, 1H, Tip-<sup>/</sup>Pr-C*H*), 5.00-4.50 (m, 2H, Tip-<sup>/</sup>Pr-C*H*), 4.44-4.13 (m, 2H, Tip-<sup>/</sup>Pr-C*H*), 3.86-3.55 (m, overlapping with thf-d8 signal, 4H, Tip-<sup>/</sup>Pr-C*H*), 3.44 (s, 8H, dme-C*H*<sub>2</sub>), 3.28 (s, 12H, dme-C*H*<sub>3</sub>), 3.22-3.06 (m, 1H, Tip-<sup>/</sup>Pr-C*H*), 2.81-2.56 (m, 5H, Tip-<sup>/</sup>Pr-C*H*), 1.91, 1.88 (each d, altogether 3H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), 1.67-1.57 (m, 3H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), 1.47-1.39 (m, 3H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), 1.35-1.06 (m, overlapping with hexane signals, 60H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), 0.71-0.60 (m, 3H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), 0.52-0.41 (m, 6H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), 0.24-0.05 (m, overlapping with signal of grease, 9H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>), -0.07 (br, 6H, Tip-<sup>/</sup>Pr-C*H*<sub>3</sub>) ppm. <sup>7</sup>Li{<sup>1</sup>H</sup> NMR (116.59 MHz, 300 K, thf-*d*<sub>8</sub>, Li<sup>+</sup> aq):  $\delta$  = 0.77 (very broad), -0.55 (s) ppm.

<sup>7</sup>Li SPE/MAS NMR (155.6 MHz, 300 K, 13 kHz): δ = −1.55 (s) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (100.61 MHz, 300 K, thf-*d*<sub>8</sub>, TMS):  $\delta$  = 155.63, 155.19, 154.88, 154.75, 154.69, 154.42, 154.23, 153.88, 153.66, 153.49, 153.16, 152.71, 152.58, 152.19, 152.05, 151.94, 151.87, 151.37, 149.13, 148.37, 147.70, 147.65, 147.54, 147.38, 147.28, 147.20, 146.41, 146.35, 145.57, 145.44, 145.00, 144.62, 144.43, 144.01, 143.92, 143.58, 142.53 (Tip-Ar-CH), 134.35 (C<sub>10</sub>H<sub>8</sub>), 128.31 (Tip-Ar-CH), 126.23 (C<sub>10</sub>H<sub>8</sub>), 122.60, 122.41, 122.38, 122.28, 122.14, 121.77, 121.71, 121.27, 121.00, 120.84, 120.57, 120.47, 120.38, 120.28, 120.12 (Tip-Ar-C), 72.48 (dme-CH<sub>2</sub>), 58.65 (dme-CH<sub>3</sub>), 35.85, 36.63, 35.16, 35.02, 35.00, 34.80, 34.70, 34.61, 34.43, 33.87, 33.81, 33.76, 33.32, 33.19, 33.03, 32.36, 30.13, 29.94, 28.84, 28.72, 28.29, 27.81, 27.72, 27.66, 27.58, 27.26, 26.44 (Tip-<sup>*i*</sup>Pr-CH), 25.58, 25.38, 25.18, 24.55, 24.42, 24.35, 24.32, 24.29, 24.27, 24.21, 24.07, 23.97, 23.81, 23.04, 22.15, 22.08 (Tip-<sup>*i*</sup>Pr-CH<sub>3</sub>) ppm.

<sup>29</sup>Si{<sup>1</sup>H} NMR (79.5 MHz, 300 K, thf- $d_8$ , TMS): Due to the presence of two rotamers in solution two sets of signals arise which are assigned according to their distinct

intensities. Major rotamer:  $\delta$  = 171.4 (br, privo-Si), 36.1 (s, ligato-Si), 5.6 (s, remoto-Si), -181.1 (s, nudo-Si) ppm. *Minor rotamer:*  $\delta$  = 172.4 (br, privo-Si), 37.2 (s, ligato-Si), 6.2 (s, remoto-Si), -183.9 (s, nudo-Si) ppm.

<sup>29</sup>Si CP/MAS NMR (79.5 MHz, 300 K, 13 kHz, TMS): *δ* = 168.3 (br, *privo*-Si), 42.9 (br, *ligato*-Si), 41.0 (br, *ligato*-Si), 3.6 (br, *remoto*-Si), 2.6 (br, *remoto*-Si), -180.9 (s, *nudo*-Si), -185.4 (s, *nudo*-Si) ppm.

**UV/vis** (*n*-hexane):  $\lambda_{max}(\epsilon) = 373 \text{ nm} (9206 \text{ L*mol}^{-1}\text{cm}^{-1})$ , 324 nm (8946 L\*mol}^{-1}\text{cm}^{-1}). **m.p.**: .167°C (decomp.).

**Elemental analysis**: calc. for  $C_{87}H_{145}Ge_2LiO_6Si_4$  (1551.65): C, 67.34; H, 9.42; N 0.00: Found: C, 49.43; H, 10.16; N, 0.00. Note: Tetrel carbide formation is a plausible reason for unsatisfying agreement between observed and theoretical value.



Figure S5: <sup>1</sup>H NMR spectrum of 2[Li(DME)<sub>3</sub>] in thf-d<sub>8</sub> at 300 K.



Figure S7: <sup>7</sup>Li SPE/MAS NMR spectrum of 2[Li(DME)<sub>3</sub>].



Figure S9:  $^{29}Si\{^{1}H\}$  NMR spectrum of 2[Li(DME)<sub>3</sub>] in thf-d<sub>8</sub> at 300 K.



Figure S10: <sup>29</sup>Si CP/MAS NMR spectrum of 2[Li(DME)<sub>3</sub>].



**Figure S11:** UV/vis spectra of **2**[Li(DME)<sub>3</sub>] in *n*-hexane at different concentrations ( $5 \times 10^{-4} \text{ molL}^{-1} - 8 \times 10^{-4} \text{ molL}^{-1}$ ).



**Figure S12**: Linear regression of **2**[Li(DME)<sub>3</sub>] at  $\lambda$  = 373 nm.



**Figure S13:** Linear regression of  $2[Li(DME)_3]$  at  $\lambda = 324$  nm.

#### 2,2,4,5,5-pentakis(2,4,6-triisopropylphenyl)-6-(trichlorosilyl)-1,2,4,5-tetrasila-3,6digermatetracyclo[2.2.0.0<sup>1,3</sup>.0<sup>3,6</sup>]hexane 12

Anionic benzpolarenide  $2Li \cdot (THF)_2$  (272 mg, 0.18 mmol, co-crystallized with 0.41 eq. thf, 0.36 eq.  $C_{10}H_8$ ) is dissolved in 10 mL of toluene and neat silicon tetrachloride (22.8 µl, 33.7 mg, 1.1 eq.) is added at room temperature. The reaction mixture is

stirred overnight at room temperature. The now red reaction mixture is dried *in vacuo* and the resulting solid is extracted with 10 mL of *n*-hexane. Removal of *n*-hexane from the resulting filtrate *in vacuo* gives trichlorosilyl-substituted benzpolarene **12** as red sticky oil.

<sup>1</sup>**H NMR** (300.13 MHz, 233 K, thf-d<sub>8</sub>, TMS):  $\delta$  = 7.38 - 6.38 (m, 10H, Tip-*H*), 4.75, 4.51, 4.25, 3.93, 3.59 (masked by thf-d<sub>8</sub>), 3.34, 3.19, 3.08, 2.76 (each br., altogether 15H, Tip-<sup>*i*</sup>Pr-C*H*), 1.65 - 0.97 (br. m, overlapping with *n*-hexane, 72H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>), 0.59 - -0.25 (br. m, 18H, Tip-<sup>*i*</sup>Pr-C*H*<sub>3</sub>) ppm.

<sup>29</sup>Si{<sup>1</sup>H} NMR (79.5 MHz, 300 K, benzene-*d*<sub>6</sub>, TMS): *δ* = 201.6 (br., *privo-Si*), 49.4 (br., *remoto-Si*), 27.6 (br., *Si*Cl<sub>3</sub>), 11.3 (br., *ligato-Si*), −218.6 (br., *nudo-Si*) ppm.

<sup>29</sup>Si{<sup>1</sup>H} NMR (79.5 MHz, 223 K, thf- $d_8$ , TMS): Due to the presence of two rotamers in solution two sets of signals (ratio 68:32) arise which are assigned based on their relative intensities. Major rotamer:  $\delta$ = 202.9 (s, privo-Si), 47.7 (s, remoto-Si), 27.2 (s, SiCl<sub>3</sub>), 11.4 (s, ligato-Si), -222.9 (s, nudo-Si) ppm. Minor rotamer:  $\delta$ = 204.6 (s, privo-Si), 49.3 (s, remoto-Si), 26.2 (s, SiCl<sub>3</sub>), 12.1 (s, ligato-Si), -225.0 (s, nudo-Si) ppm.



**Figure S14**: <sup>1</sup>H NMR spectrum of **12** in  $[D_8]$ -thf at 233 K.



Figure S16:  $^{29}$ Si{<sup>1</sup>H} NMR spectrum of **12** in [D<sub>8</sub>]-thf at 223 K.



Figure S17: 2D-  $^{29}$ Si/<sup>1</sup>H NMR spectrum of **12** in [D<sub>6</sub>]-benzene at 300 K.

Molecular structures of of 2Li (THF)<sub>2</sub> and 2[Li(DME)<sub>3</sub>]



**Figure S18:** Molecular structure of **2Li**·(THF)<sub>2</sub> in the solid state (thermal ellipsoids at 50 % probality level; hydrogen atoms are omitted for clarity). Selected interatomic distances (Å): Si1a…Ge1a 2.670(8), Si1a–Si2 2.344(8), Si1a–Si3 2.347(8), Si1a–Ge2 2.432(8), Ge1a–Si2 2.454(2), Ge1a–Si3 2.428(2), Ge1a–Ge2 2.557(2), Si1b…Ge1b 2.656(9), Si1b–Si2 2.344(9), Si1b–Si3 2.341(9), Si1b–Ge2 2.456(8), Ge1b–Si2 2.457(5), Ge1b–Si3 2.438(6), Ge1b–Ge2 2.496(5), Si3–Si4 2.3470(17), Ge2–Si4 2.458(1), Ge2–Li 2.594(8).



**Figure S19:** Molecular structures of the minor isomer (45 %) of **2**[Li(DME)<sub>3</sub>] in the solid state (thermal ellipsoids at 50 % probality level; hydrogen atoms are omitted for clarity). Selected interatomic distances (Å): Si1a-···Ge1a 2.674(7), Ge2····Li 7.607 (9), Si1a–Si2 2.339(8), Si1a–Si3 2.343(8), Si1a–Ge2 2.467(8), Ge1a–Si2 2.450(3), Ge1a–Si3 2.414(3), Ge1a–Ge2 2.559(2), Si1b-···Ge1b 2.669(7), Si1b–Si2 2.343(9), Si1b–Si3 2.340(9), Si1b–Ge2 2.470(8), Ge1b–Si2 2.447(4), Ge1b–Si3 2.430(4), Ge1b–Ge2 2.530(4), Si3–Si4 2.344 (1), Ge2–Si4 2.4800(9).

## Crystallographic data and structure refinement

**Table S1:** Crystal data and structure refinement for 2Li·(THF)<sub>2</sub> (CCDC 1921154).

| Identification code                      | sh3748                                      |                               |
|------------------------------------------|---------------------------------------------|-------------------------------|
| Empirical formula                        | C83 H131 Ge2 Li O2 Si4, 0.75                | (C10 H8)                      |
| Formula weight                           | 1521.47                                     |                               |
| Temperature                              | 152(2) K                                    |                               |
| Wavelength                               | 0.71073 Å                                   |                               |
| Crystal system                           | Monoclinic                                  |                               |
| Space group                              | C2/c                                        |                               |
| Unit cell dimensions                     | a = 38.5015(14) Å                           | <i>α</i> = 90°.               |
|                                          | b = 25.0063(10) Å                           | $\beta = 119.264(2)^{\circ}.$ |
|                                          | c = 25.1216(9) Å                            | $\gamma = 90^{\circ}.$        |
| Volume                                   | 21099.8(14) Å <sup>3</sup>                  |                               |
| Z                                        | 8                                           |                               |
| Density (calculated)                     | 0.958 Mg/m <sup>3</sup>                     |                               |
| Absorption coefficient                   | 0.652 mm <sup>-1</sup>                      |                               |
| F(000)                                   | 6552                                        |                               |
| Crystal size                             | 0.473 x 0.352 x 0.264 mm <sup>3</sup>       |                               |
| Theta range for data collection          | 1.015 to 27.167°.                           |                               |
| Index ranges                             | -47<=h<=49, -32<=k<=32, -30<=l<=32          |                               |
| Reflections collected                    | 93773                                       |                               |
| Independent reflections                  | 23385 [R(int) = 0.0501]                     |                               |
| Completeness to theta = $25.242^{\circ}$ | 100.0 %                                     |                               |
| Absorption correction                    | Semi-empirical from equivalen               | ts                            |
| Max. and min. transmission               | 0.7455 and 0.7060                           |                               |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                               |
| Data / restraints / parameters           | 23385 / 505 / 998                           |                               |
| Goodness-of-fit on F <sup>2</sup>        | 1.732                                       |                               |
| Final R indices [I>2sigma(I)]            | R1 = 0.0707, wR2 = 0.2217                   |                               |
| R indices (all data)                     | R1 = 0.1206, $wR2 = 0.2086$                 |                               |
| Extinction coefficient                   | n/a                                         |                               |
| Largest diff. peak and hole              | 1.165 and -0.603 e.Å <sup>-3</sup>          |                               |

Table S2: Crystal data and structure refinement for 2[Li(DME)<sub>3</sub>] (CCDC 1921153).

| Identification code                      | sh3772                                      |                        |
|------------------------------------------|---------------------------------------------|------------------------|
| Empirical formula                        | C75 H115 Ge2 Si4, C12 H30 O6 Li, C6 H14     |                        |
| Formula weight                           | 1637.67                                     |                        |
| Temperature                              | 142(2) K                                    |                        |
| Wavelength                               | 0.71073 Å                                   |                        |
| Crystal system                           | Monoclinic                                  |                        |
| Space group                              | P2 <sub>1</sub> /c                          |                        |
| Unit cell dimensions                     | a = 16.0399(10) Å                           | α= 90°.                |
|                                          | b = 33.650(3) Å                             | β=113.728(3)°.         |
|                                          | c = 19.5422(14) Å                           | $\gamma = 90^{\circ}.$ |
| Volume                                   | 9656.1(12) Å <sup>3</sup>                   |                        |
| Z                                        | 4                                           |                        |
| Density (calculated)                     | 1.127 Mg/m <sup>3</sup>                     |                        |
| Absorption coefficient                   | 0.719 mm <sup>-1</sup>                      |                        |
| F(000)                                   | 3552                                        |                        |
| Crystal size                             | 0.399 x 0.354 x 0.180 mm <sup>3</sup>       |                        |
| Theta range for data collection          | 1.210 to 27.235°.                           |                        |
| Index ranges                             | -19<=h<=20, -43<=k<=43, -25<=l<=25          |                        |
| Reflections collected                    | 88152                                       |                        |
| Independent reflections                  | 21451 [R(int) = 0.0602]                     |                        |
| Completeness to theta = $25.242^{\circ}$ | 99.9 %                                      |                        |
| Absorption correction                    | Semi-empirical from equivalen               | ts                     |
| Max. and min. transmission               | 0.7455 and 0.6684                           |                        |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                        |
| Data / restraints / parameters           | 21451 / 286 / 1060                          |                        |
| Goodness-of-fit on F <sup>2</sup>        | 1.273                                       |                        |
| Final R indices [I>2sigma(I)]            | R1 = 0.0699, wR2 = 0.1800                   |                        |
| R indices (all data)                     | R1 = 0.0966, $wR2 = 0.1956$                 |                        |
| Extinction coefficient                   | n/a                                         |                        |
| Largest diff. peak and hole              | 1.770 and -0.806 e.Å <sup>-3</sup>          |                        |

### **Theoretical Details and Optimized Structures**

All Computations were performed using the Gaussian09 program package.<sup>S2</sup> Optimization of molecular structures was carried out at the BP86-D3/def2SVP level of theory, employing the third generation of Grimme's dispersion correction.<sup>S3-S5</sup> Presence of local minima were verified using frequency analyses at the BP86 /def2SVP level of theory. Pictures of molecular structures were plotted with ChemCraft.<sup>S6</sup>



Figure **S1**: Stuctural comparison of the optimized structures of the enantiomeric forms of anionic benzpolarenide **2** (left) and **2'** (right). Hydrogen atomes and isopropyl-carbon atoms are omitted for clarity.

Table S1: Atomic coordinates of optimized benzpolarenide 2.

| С | -5.420873000 | -4.751616000 | 5.073388000  |
|---|--------------|--------------|--------------|
| С | -7.196704000 | -3.021944000 | 4.492489000  |
| С | -6.153260000 | -4.012771000 | 3.935042000  |
| С | -5.182188000 | -3.314124000 | 2.989121000  |
| Ċ | -4.301934000 | -2.319927000 | 3.448366000  |
| Ĉ | -5.142912000 | -3.622913000 | 1.620956000  |
| č | -1 416431000 | -1 239001000 | 4 059587000  |
| č | -3 294444000 | 0 471444000  | 4 052781000  |
| č | -3 430727000 | -1 624079000 | 2 587312000  |
| č | -2 524417000 | -0.571280000 | 3 222669000  |
| č | -4 276761000 | -2 962246000 | 0 725216000  |
| č | -5 974595000 | 0 255246000  | 1 319115000  |
| č | -3 413090000 | -1 920516000 | 1 189555000  |
| č | -3 961688000 | -4 888416000 | -0.908769000 |
| č | 3 404226000  | -4 295315000 | 2 034399000  |
| č | -0 448868000 | 2 850850000  | 4 355483000  |
| č | -4 324229000 | -3 400735000 | -0 740023000 |
| č | -5 673950000 | -3 049027000 | -1 394895000 |
| č | 2 378998000  | -5 104961000 | -0 147970000 |
| č | -4 770542000 | 0.927178000  | 0.147370000  |
| č | 2 976431000  | -3 902289000 | 0.608198000  |
| č | 4 409001000  | -0.661172000 | 3 717430000  |
| č | -4 765126000 | 2 451666000  | 0.855105000  |
| č | -0.037686000 | 2 200760000  | 2 978221000  |
| č | 1 493330000  | 2 166804000  | 2.893630000  |
| č | -4 701421000 | 0 539964000  | -0.851504000 |
| č | 4 783963000  | -0 799668000 | 2 229218000  |
| č | -0.592947000 | 3 098725000  | 1 797359000  |
| č | -3 660843000 | -0 284120000 | -1 389666000 |
| č | 6 118519000  | -1 540253000 | 2 030381000  |
| č | -5 725268000 | 1 022762000  | -1 689142000 |
| č | 4.093571000  | -3.245925000 | -0.200389000 |
| Č | 5.232526000  | -4.034566000 | -0.471693000 |
| Č | -0.767687000 | 4.490927000  | 1.940361000  |
| Č | -0.894787000 | 2.475014000  | 0.548248000  |
| Č | -8.249452000 | 0.835303000  | -3.535570000 |
| č | -3.670168000 | -0.533745000 | -2.795582000 |
| č | -5.752724000 | 0.758058000  | -3.069202000 |
| č | 4.753379000  | 0.558217000  | 1.527333000  |
| Ĉ | 4.023531000  | -1.908582000 | -0.699548000 |
| Ĉ | -1.249495000 | 5.297122000  | 0.895747000  |
| č | -3.110748000 | -2.572224000 | -4.245007000 |
| Ĉ | 6.307324000  | -3.573185000 | -1.246389000 |
| č | -2.819763000 | 7.298199000  | 0.829192000  |
| č | 7.557904000  | -4.421496000 | -1.449858000 |
| č | -4.706242000 | -0.011392000 | -3.599346000 |
| č | -2.575330000 | -1.336573000 | -3.498178000 |
| č | -1.416554000 | 3,283995000  | -0.511746000 |
| Ċ | -6.850997000 | 1.326058000  | -3.961531000 |
| Ċ | -1.377222000 | 6.807391000  | 1.063409000  |
| C | 3.773870000  | 0.884128000  | 0.539262000  |
| С | 5.708513000  | 1.515852000  | 1.925809000  |
| С | -1.582341000 | 4.669003000  | -0.316868000 |
| С | -6.787152000 | 2.867193000  | -4.008235000 |
| С | 8.771479000  | -3.781365000 | -0.742762000 |
| С | -1.762398000 | 2.712040000  | -1.890552000 |

| С      | 7.851974000                 | -4.683994000 | -2.940184000  |
|--------|-----------------------------|--------------|---------------|
| С      | 5.078416000                 | -1.465553000 | -1.557847000  |
| С      | -3.089757000                | 3.228946000  | -2.475141000  |
| С      | 6.193152000                 | -2.288655000 | -1.806495000  |
| С      | 3.724162000                 | 2.233957000  | 0.064174000   |
| Ċ      | 5,730443000                 | 2.810540000  | 1.385684000   |
| Č      | -1 744204000                | -0 438314000 | -4 432396000  |
| č      | -0 375641000                | 7 547111000  | 0 151413000   |
| č      | 6 206379000                 | 5 060227000  | 2 465674000   |
| ĉ      | 2 05/30000                  | 1 115577000  | -0.353365000  |
| č      | 2.034330000                 | 2 1/9790000  | -0.3333030000 |
| Č      | 2 625025000                 | 2 775642000  | 0.477004000   |
|        | 2.020920000                 | 2.773042000  | -0.659002000  |
|        | 0.000094000                 | 3.017323000  | 1.777274000   |
|        | -0.608270000                | 2.959727000  | -2.880176000  |
| C      | 5.022352000                 | -0.116794000 | -2.269075000  |
| C      | 6.199073000                 | 0.805829000  | -1.906189000  |
| C      | 4.875184000                 | -0.300506000 | -3.791999000  |
| С      | 3.100086000                 | 2.923152000  | -2.319914000  |
| С      | 7.668061000                 | 4.212095000  | 0.559517000   |
| Н      | -6.137002000                | -5.303492000 | 5.720452000   |
| Н      | -7.942821000                | -3.538690000 | 5.134808000   |
| Н      | -4.683961000                | -5.476623000 | 4.670518000   |
| Н      | -4.866562000                | -4.038548000 | 5.720582000   |
| Н      | -6.701314000                | -4.776307000 | 3.336830000   |
| Н      | -6.707122000                | -2.236681000 | 5.107502000   |
| Н      | -7.737531000                | -2,509343000 | 3.670351000   |
| Н      | -4.297886000                | -2.064552000 | 4.521521000   |
| н      | -3 816037000                | 0.010478000  | 4 918834000   |
| н      | -1 843839000                | -1 764679000 | 4 941572000   |
| н      | -5 817752000                | -4 407058000 | 1 236102000   |
| н      | -0.686496000                | -0.485816000 | 1.200102000   |
| н      | -2 5000430000               | 1 233000000  | 4.456578000   |
| L<br>L | -2.03300000                 | 0.005806000  | 2 441 206000  |
|        | -4.055569000                | 1 090150000  | 2 4521 45000  |
|        | -0.000072000                | -1.960150000 | 2 411020000   |
|        | -5.969774000                | 0.400049000  | 2.411029000   |
| п      | -4.706440000                | -5.556358000 | -0.424072000  |
| н      | 2.541477000                 | -4.719059000 | 2.590778000   |
| н      | -5.952830000                | -0.844433000 | 1.182240000   |
| н      | -6.510041000                | -3.604456000 | -0.916893000  |
| Н      | -0.212626000                | 2.110312000  | 5.148405000   |
| Н      | -2.966088000                | -5.097787000 | -0.466003000  |
| Н      | -6.933011000                | 0.638651000  | 0.905780000   |
| Н      | -1.533496000                | 3.078297000  | 4.406079000   |
| Н      | -2.021860000                | -0.031166000 | 2.389896000   |
| Н      | 1.485988000                 | -5.490617000 | 0.387207000   |
| Н      | 4.210881000                 | -5.060517000 | 2.028737000   |
| Н      | 3.772550000                 | -3.419503000 | 2.605174000   |
| Н      | 4.393432000                 | -1.656573000 | 4.211719000   |
| Н      | -3.919881000                | -5.158693000 | -1.985996000  |
| Н      | -4.808186000                | 2.679009000  | 1.941807000   |
| Н      | 0.102250000                 | 3.782337000  | 4.609482000   |
| Н      | -5.884107000                | -1.963587000 | -1.309427000  |
| н      | -3 846604000                | 0.547209000  | 1 106494000   |
| н      | 3 111924000                 | -5 936291000 | -0 246005000  |
| н      | -5 660235000                | -3 306535000 | -2 475378000  |
| н      | -0 450067000                | 1 271761000  | 2.470070000   |
| Ц      | 3 101533000                 | -0 200786000 | 2 822020000   |
|        | 2 52740000                  | -0.203100000 | 1 200275000   |
|        | -3.337409000<br>1 000557000 | -2.000120000 | -1.2003/3000  |
| п      | 1.00305/000                 | 000008666.1  | 3.734704000   |

| Н      | 2.155906000                 | -3.160519000 | 0.708931000  |
|--------|-----------------------------|--------------|--------------|
| Н      | 5.133127000                 | -0.021371000 | 4.266275000  |
| Н      | 2.050471000                 | -4.806126000 | -1.163779000 |
| Н      | -5.636973000                | 2.949655000  | 0.378011000  |
| Н      | 6.065617000                 | -2.564649000 | 2.455178000  |
| н      | 5 286056000                 | -5 054362000 | -0.052734000 |
| н      | -3 839557000                | 2 01/26/000  | 0.002704000  |
| н<br>Ц | 2 007520000                 | 1 422000000  | 1 775200000  |
|        | 5.907520000                 | -1.423990000 | 1.775590000  |
|        | -0.522516000                | 1.044400000  | -1.240073000 |
| н      | -8.502175000                | 1.189934000  | -2.513570000 |
| Н      | 1.988728000                 | 3.160682000  | 2.932682000  |
| Н      | -0.510358000                | 4.975707000  | 2.896288000  |
| Н      | 1.804799000                 | 1.670962000  | 1.955998000  |
| Н      | 6.956706000                 | -1.009036000 | 2.531424000  |
| Н      | -8.297036000                | -0.273209000 | -3.523945000 |
| Н      | -3.667288000                | -3.246943000 | -3.564502000 |
| Н      | -3.534213000                | 6.770254000  | 1.493963000  |
| Н      | 7 366747000                 | -5 406359000 | -0.966083000 |
| н      | 6 361492000                 | -1 633727000 | 0.952976000  |
| ц      | -0.035440000                | 1 212/88000  | -1 225375000 |
|        | -9.033449000                | 1.212400000  | -4.223373000 |
|        | -1.079409000                | -1.702390000 | -2.712119000 |
| н      | -1.108267000                | 7.042435000  | 2.118507000  |
| н      | -6.978493000                | 3.301412000  | -3.003575000 |
| Н      | 6.466059000                 | 1.241109000  | 2.680264000  |
| Н      | 8.561903000                 | -3.615983000 | 0.334177000  |
| Н      | -2.270449000                | -3.152633000 | -4.681666000 |
| Н      | -2.907742000                | 8.390183000  | 1.017504000  |
| Н      | -3.916107000                | 3.163269000  | -1.743151000 |
| Н      | -1.874484000                | 1.612668000  | -1.770939000 |
| Н      | 9.676106000                 | -4.421653000 | -0.831065000 |
| н      | -3,794464000                | -2.291816000 | -5.075679000 |
| H      | 6 982287000                 | -5 155222000 | -3 442736000 |
| н      | -3 140647000                | 7 113024000  | -0 217995000 |
| ц      | -1 607078000                | -0.212826000 | -1 684867000 |
|        | -4.097970000<br>5.605062000 | 4 772767000  | 2 252007000  |
|        | 0.000000000                 | 4.773707000  | 3.353007000  |
| н      | 8.731029000                 | -5.353163000 | -3.062626000 |
| н      | -7.545806000                | 3.282678000  | -4.706773000 |
| Н      | 1.789253000                 | 4.067619000  | 0.719597000  |
| Н      | -6.661776000                | 0.949992000  | -4.992852000 |
| Н      | -5.784410000                | 3.214710000  | -4.331343000 |
| Н      | -1.972086000                | 5.277531000  | -1.149128000 |
| Н      | 1.790442000                 | 2.042135000  | -0.845767000 |
| Н      | -3.379303000                | 2.604799000  | -3.346064000 |
| Н      | 9.009994000                 | -2.792379000 | -1.189419000 |
| н      | -1 332022000                | 0 427314000  | -3 877890000 |
| н      | 7 473939000                 | 3 313611000  | 2 513281000  |
| Ц      | 0 662150000                 | 7 20105/000  | 0.338335000  |
|        | 0.002139000                 | 9 646222000  | 0.330333000  |
|        | -0.415955000                | 0.040233000  | 0.313720000  |
| п      | -3.014453000                | 4.282322000  | -2.823512000 |
| н      | 8.076287000                 | -3.737916000 | -3.477807000 |
| Н      | -0.886683000                | -1.001509000 | -4.857729000 |
| Н      | 7.000248000                 | -1.907702000 | -2.454907000 |
| Н      | 0.309816000                 | 2.430741000  | -2.557858000 |
| Н      | 4.094970000                 | 0.386712000  | -1.928765000 |
| Н      | -2.355240000                | -0.046581000 | -5.275214000 |
| Н      | 1.127138000                 | 4.367128000  | -0.905457000 |
| н      | 7 003878000                 | 5 761477000  | 2 794342000  |
|        | 1.000010000                 | 01101111000  | 2.104042000  |
| н      | -0.600524000                | 7.354205000  | -0.919415000 |
| H<br>H | -0.600524000                | 7.354205000  | -0.919415000 |

| Н  | 6.283679000  | 0.924553000  | -0.807418000 |
|----|--------------|--------------|--------------|
| Н  | 2.768061000  | 4.955911000  | -0.497541000 |
| Н  | -0.870979000 | 2.594739000  | -3.895692000 |
| Н  | 4.681798000  | 4.173469000  | 0.072462000  |
| Н  | -0.379806000 | 4.045103000  | -2.955912000 |
| Н  | 3.976261000  | -0.906237000 | -4.028957000 |
| Н  | 7.163310000  | 0.406241000  | -2.289550000 |
| Н  | 3.279121000  | 1.940280000  | -2.796644000 |
| Н  | 5.759300000  | -0.814742000 | -4.227184000 |
| Н  | 8.107682000  | 3.315965000  | 0.074857000  |
| Н  | 2.335761000  | 3.451006000  | -2.926943000 |
| Н  | 6.052389000  | 1.814740000  | -2.345382000 |
| Н  | 8.495014000  | 4.893931000  | 0.854340000  |
| Н  | 4.041986000  | 3.511138000  | -2.372924000 |
| Н  | 7.055569000  | 4.735781000  | -0.205213000 |
| Н  | 4.774067000  | 0.683919000  | -4.298079000 |
| Si | -2.331829000 | -1.029607000 | -0.167687000 |
| Si | 0.715942000  | -1.174471000 | 1.047732000  |
| Ge | -0.424566000 | -2.624815000 | -0.701772000 |
| Si | -0.647450000 | 0.584966000  | 0.219064000  |
| Si | 2.699662000  | -0.584939000 | -0.148527000 |
| Ge | 0.706500000  | -0.410464000 | -1.596547000 |
|    |              |              |              |

Table S2: Atomic coordinates of optimized benzpolarenide 2'.

| С | 5.572685000  | -4.704764000 | -4.953861000 |
|---|--------------|--------------|--------------|
| С | 7.311764000  | -2.957109000 | -4.316711000 |
| С | 6.265023000  | -3.962746000 | -3.792875000 |
| С | 5.261752000  | -3.278042000 | -2.870691000 |
| С | 4.381322000  | -2.293833000 | -3.350222000 |
| С | 5.194783000  | -3.586361000 | -1.503625000 |
| С | 1.527579000  | -1.241315000 | -4.072605000 |
| С | 3.363244000  | 0.504174000  | -3.956845000 |
| С | 3.481842000  | -1.607518000 | -2.510644000 |
| С | 2.581260000  | -0.565662000 | -3.173259000 |
| С | 4.303915000  | -2.932277000 | -0.627436000 |
| С | 5.994632000  | 0.293581000  | -1.194795000 |
| С | 3.437875000  | -1.901320000 | -1.111926000 |
| С | 3.968580000  | -4.852798000 | 1.010790000  |
| С | -3.392124000 | -4.304103000 | -1.870702000 |
| С | 0.467896000  | 2.865782000  | -4.326680000 |
| С | 4.331407000  | -3.365415000 | 0.840487000  |
| С | 5.672564000  | -3.009467000 | 1.510682000  |
| С | -2.394617000 | -5.104196000 | 0.330631000  |
| С | 4.773437000  | 0.961343000  | -0.530216000 |
| С | -2.976402000 | -3.905466000 | -0.443048000 |
| С | -4.439047000 | -0.689751000 | -3.621365000 |
| С | 4.763080000  | 2.484645000  | -0.764433000 |
| С | 0.041418000  | 2.318936000  | -2.952560000 |
| С | -1.491563000 | 2.195002000  | -2.876966000 |
| С | 4.679120000  | 0.579920000  | 0.949405000  |
| С | -4.800319000 | -0.809601000 | -2.128256000 |
| С | 0.591940000  | 3.115184000  | -1.767416000 |
| С | 3.640313000  | -0.258215000 | 1.468078000  |
| С | -6.132444000 | -1.548267000 | -1.908205000 |
| С | 5.680101000  | 1.078654000  | 1.804988000  |
| С | -4.094411000 | -3.229344000 | 0.346348000  |
| С | -5.236911000 | -4.008374000 | 0.629878000  |
|   |              |              |              |

| С | 0.761416000                | 4.508743000  | -1.903280000                |
|---|----------------------------|--------------|-----------------------------|
| С | 0.890403000                | 2.486393000  | -0.520169000                |
| С | 8.163323000                | 0.908113000  | 3.722725000                 |
| С | 3.631827000                | -0.514572000 | 2.873320000                 |
| С | 5.682571000                | 0.819756000  | 3.186190000                 |
| С | -4.761611000               | 0.557407000  | -1.444479000                |
| С | -4.019950000               | -1.881842000 | 0.816694000                 |
| С | 1.232362000                | 5.311334000  | -0.851082000                |
| С | 3.116903000                | -2.515802000 | 4.391554000                 |
| С | -6.311453000               | -3.527662000 | 1.392895000                 |
| С | 2.791163000                | 7.320802000  | -0.760052000                |
| С | -7.567847000               | -4.364893000 | 1.605757000                 |
| С | 4.640336000                | 0.031236000  | 3.696479000                 |
| Ċ | 2.550231000                | -1.353607000 | 3.555321000                 |
| Č | 1.399454000                | 3.291817000  | 0.548440000                 |
| č | 6 753447000                | 1 406745000  | 4 099269000                 |
| č | 1 353528000                | 6 823179000  | -1 009441000                |
| č | -3 775204000               | 0.802566000  | -0.465800000                |
| č | -5 715812000               | 1 512860000  | -1 8/0580000                |
| č | 1 558032000                | 1.512003000  | 0.361130000                 |
| č | 6 690294000                | 4.070770000  | 4 117100000                 |
| č | 0.009204000                | 2.940341000  | 4.117199000                 |
|   | -0.771104000               | -3.735064000 | 0.07220000                  |
|   | 1.740938000                | 2.713227000  | 1.925439000                 |
| C | -7.877141000               | -4.590858000 | 3.098887000                 |
| C | -5.072745000               | -1.420195000 | 1.667740000                 |
| C | 3.042236000                | 3.263573000  | 2.537645000                 |
| C | -6.19130/000               | -2.234124000 | 1.930379000                 |
| C | -3.719318000               | 2.247409000  | -0.007254000                |
| С | -5.731147000               | 2.814103000  | -1.324962000                |
| С | 1.610232000                | -0.466392000 | 4.390777000                 |
| С | 0.339854000                | 7.552447000  | -0.102377000                |
| С | -6.209105000               | 5.056020000  | -2.421287000                |
| С | -2.049045000               | 4.131871000  | 0.386371000                 |
| С | -4.708040000               | 3.159962000  | -0.425622000                |
| С | -2.615838000               | 2.795401000  | 0.905587000                 |
| С | -6.807509000               | 3.818684000  | -1.721444000                |
| С | 0.568125000                | 2.910545000  | 2.904081000                 |
| С | -5.009954000               | -0.062501000 | 2.360248000                 |
| С | -6.185789000               | 0.858419000  | 1.990119000                 |
| С | -4.859396000               | -0.226603000 | 3.885332000                 |
| С | -3.082186000               | 2.956785000  | 2.367898000                 |
| С | -7.665110000               | 4.222959000  | -0.504032000                |
| Н | 6.312529000                | -5.245543000 | -5.583288000                |
| Н | 8.080535000                | -3.461367000 | -4.942074000                |
| Н | 4.833784000                | -5.440408000 | -4.574496000                |
| н | 5.027696000                | -3.995693000 | -5.613203000                |
| H | 6.805126000                | -4.722757000 | -3.183061000                |
| H | 6 829486000                | -2 173480000 | -4 939588000                |
| н | 7 824337000                | -2 443461000 | -3 477317000                |
| н | 4 400095000                | -2 037886000 | -4 423151000                |
| н | 3 929823000                | 0.064077000  | -4 805426000                |
| н | 2 004465000                | -1 726753000 | -1 952127000                |
| н | 5 868600000                | -4 363330000 | -1 103072000                |
| н | 0.701832000                | -0.407358000 | -1.103072000                |
| Ц | 2 667807000                | 1 2556/2000  | -1 380364000                |
|   | 2.00/00/000<br>1 096206000 | 1.200040000  | 2 200270000                 |
|   | 4.000290000                | 0100100000   | -3.303310000<br>2 E1/E77000 |
|   | 0.900007000                | -2.010211000 | -3.3143//000                |
|   | 0.009308000                | 0.409331000  | -2.20/001000                |
| Н | 4.720738000                | -5.521946000 | 0.539191000                 |

| Н | -2.525477000 | -4.733561000 | -2.416640000 |
|---|--------------|--------------|--------------|
| Н | 5.977132000  | -0.805586000 | -1.053065000 |
| Н | 6.516159000  | -3.563427000 | 1.044441000  |
| Н | 0.232370000  | 2.126709000  | -5.121207000 |
| Н | 2.979497000  | -5.065663000 | 0.555267000  |
| Н | 6.942646000  | 0.684947000  | -0.765283000 |
| Н | 1.555030000  | 3.083363000  | -4.367465000 |
| Н | 2.030313000  | -0.047420000 | -2.357747000 |
| Н | -1.500668000 | -5.502237000 | -0.193858000 |
| Н | -4.203537000 | -5.064367000 | -1.869499000 |
| Н | -3.748841000 | -3.427574000 | -2.447922000 |
| Н | -4.417237000 | -1.692241000 | -4.100925000 |
| Н | 3.911932000  | -5.116834000 | 2.088831000  |
| Н | 4.827933000  | 2.707693000  | -1.850911000 |
| Н | -0.072411000 | 3.802146000  | -4.585981000 |
| Н | 5.880966000  | -1.923572000 | 1.426412000  |
| н | 3.861601000  | 0.571971000  | -1.024168000 |
| Н | -3.133434000 | -5.929620000 | 0.434017000  |
| H | 5.656115000  | -3.265781000 | 2.591331000  |
| Н | 0.446610000  | 1.287869000  | -2.855261000 |
| н | -3 437385000 | -0 229294000 | -3 742990000 |
| н | 3 537776000  | -2 800574000 | 1 369617000  |
| н | -1 879408000 | 1 577037000  | -3 714540000 |
| н | -2 148685000 | -3 172556000 | -0 541868000 |
| н | -5 174657000 | -0.065718000 | -4 173206000 |
| н | -2 070627000 | -4 795215000 | 1.345062000  |
| н | 5 621548000  | 2 990450000  | -0 271646000 |
| н | -6 082470000 | -2 577272000 | -2 322236000 |
| н | -5 293223000 | -5 035824000 | 0 230335000  |
| Н | 3.826543000  | 2.943107000  | -0.389878000 |
| Н | -3.999234000 | -1.428430000 | -1.674023000 |
| H | 6.477681000  | 1.709416000  | 1.376428000  |
| н | 8,445489000  | 1.243317000  | 2,701735000  |
| н | -1.979999000 | 3.191807000  | -2.929177000 |
| Н | 0.507700000  | 4.996839000  | -2.858564000 |
| Н | -1.812733000 | 1.709926000  | -1.936307000 |
| Н | -6.975840000 | -1.023145000 | -2.406997000 |
| Н | 8.210100000  | -0.200462000 | 3.733056000  |
| Н | 3.790426000  | -3.157246000 | 3.787908000  |
| Н | 3.514407000  | 6.799968000  | -1.420908000 |
| Н | -7.377502000 | -5.361783000 | 1.146944000  |
| Н | -6.365349000 | -1.630150000 | -0.827705000 |
| Н | 8.929708000  | 1.297635000  | 4.427661000  |
| Н | 1.924827000  | -1.803723000 | 2.753222000  |
| Н | 1.092549000  | 7.062557000  | -2.065575000 |
| Н | 6.911165000  | 3.365916000  | 3.111793000  |
| Н | -6.478262000 | 1.230959000  | -2.596418000 |
| Н | -8.550969000 | -3.597402000 | -0.206412000 |
| Н | 2.290604000  | -3.153655000 | 4.770829000  |
| Н | 2.874676000  | 8.414112000  | -0.942613000 |
| Н | 3.879956000  | 3.242361000  | 1.815921000  |
| Н | 1.888146000  | 1.620063000  | 1.794272000  |
| Н | -9.680615000 | -4.367432000 | 0.968064000  |
| Н | 3.692497000  | -2.156392000 | 5.272204000  |
| Н | -7.014600000 | -5.054267000 | 3.620678000  |
| Н | 3.104045000  | 7.132743000  | 0.289056000  |
| Н | 4.615179000  | -0.169525000 | 4.781695000  |
| Н | -5.610005000 | 4.762418000  | -3.307773000 |
| Н | -8.760583000 | -5.252822000 | 3.228470000  |
|   |              |              |              |

| Н  | 7.427408000  | 3.375066000  | 4.830732000  |
|----|--------------|--------------|--------------|
| Н  | -1.790684000 | 4.076274000  | -0.687798000 |
| Н  | 6.534983000  | 1.049056000  | 5.131384000  |
| Н  | 5.677960000  | 3.302372000  | 4.404590000  |
| Н  | 1.938659000  | 5.285709000  | 1.199010000  |
| Н  | -1.780432000 | 2.061567000  | 0.890912000  |
| Н  | 3.340689000  | 2.631512000  | 3.399592000  |
| Н  | -9.007036000 | -2.733783000 | 1.292255000  |
| Н  | 1.133461000  | 0.303633000  | 3.752235000  |
| Н  | -7.477342000 | 3.309701000  | -2.451552000 |
| Н  | -0.694398000 | 7.203005000  | -0.300599000 |
| Н  | 0.375865000  | 8.652664000  | -0.258115000 |
| Н  | 2.925216000  | 4.306058000  | 2.906725000  |
| Н  | -8.102060000 | -3.631455000 | 3.611938000  |
| Н  | 0.795467000  | -1.070746000 | 4.842978000  |
| Н  | -6.996921000 | -1.838230000 | 2.571698000  |
| Н  | -0.324131000 | 2.345395000  | 2.571285000  |
| Н  | -4.082486000 | 0.432283000  | 2.009246000  |
| Н  | 2.157981000  | 0.052056000  | 5.208481000  |
| Н  | -1.119435000 | 4.389089000  | 0.931290000  |
| Н  | -7.007534000 | 5.754502000  | -2.753553000 |
| Н  | 0.556079000  | 7.354612000  | 0.969329000  |
| Н  | -5.536936000 | 5.615871000  | -1.736475000 |
| Н  | -6.278000000 | 0.958922000  | 0.890234000  |
| Н  | -2.763463000 | 4.971809000  | 0.528728000  |
| Н  | 0.836609000  | 2.551846000  | 3.920045000  |
| Н  | -4.672644000 | 4.188962000  | -0.032560000 |
| Н  | 0.294837000  | 3.985344000  | 2.981290000  |
| Н  | -3.963218000 | -0.833637000 | 4.129067000  |
| Н  | -7.148537000 | 0.468541000  | 2.386951000  |
| Н  | -3.255391000 | 1.979396000  | 2.857529000  |
| Н  | -5.745009000 | -0.730439000 | 4.329516000  |
| Н  | -8.104032000 | 3.330612000  | -0.011799000 |
| Н  | -2.317491000 | 3.495296000  | 2.964601000  |
| Н  | -6.032949000 | 1.873932000  | 2.411391000  |
| Н  | -8.492328000 | 4.903524000  | -0.801098000 |
| Н  | -4.026293000 | 3.541348000  | 2.418512000  |
| Н  | -7.049732000 | 4.751248000  | 0.255205000  |
| Н  | -4.752548000 | 0.764046000  | 4.378022000  |
| Si | 2.333389000  | -1.009649000 | 0.226789000  |
| Ge | -0.730728000 | -1.227499000 | -1.178236000 |
| Ge | 0.429408000  | -2.596461000 | 0.779342000  |
| Si | 0.652409000  | 0.588009000  | -0.233122000 |
| Si | -2.697275000 | -0.575676000 | 0.212589000  |
| Si | -0.680533000 | -0.428602000 | 1.452710000  |

### References

- S1 A. Jana, V. Huch, M. Repisky, R. J. F. Berger and D. Scheschkewitz, Angew. Chem. Int. Ed., 2014, 53, 3514.
- S2 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian Inc.*, Wallingford CT, 2016.
- S3 a) J. P.Perdew, *Phys. Rev. B*, 1986, **33**, 8822; b) A. D. Becke, *Phys. Rev. A*, 1988, **38**,3098.
- S4 a) A. Horn, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; b) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; c) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 18, 3297; d) F. Weigend, Phys. Chem. Chem. Phys., 2006, 9, 1057.
- S5 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- S6 Chemcraft graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com