Electronic Supporting Information for:

High pressure synthesis of quasi-one-dimensional GdFeO$_3$-type perovskite PrCuO$_3$ with nearly divalent Cu ions

Masaharu Ito,a Hidefumi Takahashi,a,b Hideaki Sakai,a,c,d Hajime Sagayama,e Yuichi Yamasaki,d,f,g Yuichi Yokoyama,f,h Hiroyuki Setoyama,i Hiroki Wadati,b Kanako Takahashi,a Yoshihiro Kusano,j
Shintaro Ishiwata*,a,b,d

aDepartment of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan.
bDivision of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
cDepartment of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
dPRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
eInstitute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan.
fResearch and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki, Tsukuba 305-0047, Japan.
gRIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
hInstitute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan.
iKyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan.
jDepartment of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan

* E-mail: ishiwata@mp.es.osaka-u.ac.jp
1. High pressure synthesis

We have performed high pressure oxygen annealing for the oxygen deficient perovskite PrCuO$_{2.5}$ at several temperatures 420-500 °C under a high pressure of 7.5 GPa. Since NaClO$_3$ does not release oxygen below 420 °C and the impurity phase of PrO$_2$ appears above 450 °C, we concluded that the optimum annealing temperature is about 440 °C at a high pressure of 7.5 GPa. Furthermore, we have confirmed that the oxidizer NaClO$_3$ should be mixed with the oxygen deficient perovskite PrCuO$_{2.5}$ to obtain the fully oxidized PrCuO$_3$.

The XRD patterns of PrCuO$_{2.5}$ and PrCuO$_3$, which was obtained by the high-pressure oxygen annealing for PrCuO$_{2.5}$ at 450 °C and 7.5 GPa, are shown in Fig. S1. All the peaks for PrCuO$_{2.5}$ can be indexed with an orthorhombic unit cell (Pbam) with $a = 5.584$ Å, $b = 10.353$ Å, $c = 3.828$ Å. The main peaks for PrCuO$_3$ can be indexed with an orthorhombic unit cell (Pbnm) with $a = 5.301$ Å, $b = 6.245$ Å, $c = 7.278$ Å. The 020 reflection with asterisk is superimposed by the main reflection from the impurity phase of PrO$_2$, which is absent in the sample obtained at 440 °C and 7.5 GPa.

![Graph showing XRD patterns for PrCuO$_{2.5}$ and PrCuO$_3$.](image)

Fig. S1: XRD patterns for PrCuO$_{2.5}$ and PrCuO$_3$ measured by a Cu Kα radiation.
2. Linear interpolation analyses for XANES spectra

As shown in Fig. 4, the pre-edge structure below 8995 eV, which corresponds to the quadruple transition, is prominent especially for CuO. In order to minimize the effect of the pre-edge structure on the estimation of the absorption edge energy, we chose the intersection of the horizontal line for the linear interpolation analyses as shown in the inset of Fig. 4 (the horizontal line is located at 70% of the maximum value). On the basis of the energies of intersections for CuO and LaCuO$_3$, we define that the absorption edge energies for Cu$^{2+}$ and Cu$^{3+}$ states are 8996.5 eV and 8997.6 eV, respectively. Provided that the oxidation state of Cu is linearly proportional to the absorption edge energy (the linear interpolation analysis)25 the oxidation state of Cu in PrCuO$_3$ is calculated to be +2.2.