Supporting information for:

Pseudodiborenes: hydride-bridged diboranes(5) as twoelectron reductants of chalcogens

Dominic Prieschl,^{1,2} Maximilian Dietz,^{1,2} Jonas H. Muessig,^{1,2} Katharina Wagner,^{1,2} Ivo Krummenacher,^{1,2} and Holger Braunschweig*,^{1,2}

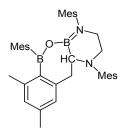
¹ Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

² Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Table of contents

General information	2
Synthetic procedures	3
NMR spectra of isolated compounds	9
HRMS spectra of isolated compounds	20
Cyclic voltammetry	26
X-ray crystallographic details	28
References	30

Experimental Details


General information

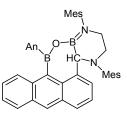
All reactions were performed under an atmosphere of dry argon using standard Schlenk line or glovebox techniques. Deuterated solvents were degassed by three freeze-pump-thaw cycles and dried over molecular sieves. All other solvents were distilled and degassed from appropriate drying agents under an argon atmosphere. The solvents were then stored under argon over activated 4 Å molecular sieves. Diboranes(5) 1^1 and 2^2 were synthesised according to literature procedures. All other chemicals were purchased from either Sigma-Aldrich, Acros or TCI Chemical Co. and used as received unless otherwise specified.

NMR spectra were obtained from a Bruker Avance 500 NMR spectrometer (¹H and ¹H{¹¹B}: 500.1 MHz, ¹¹B: 160.5 MHz, ¹³C{¹H}: 125.8 MHz, ⁷⁷Se{¹H}: 95.4 MHz) or a Bruker Avance 400 (¹H and ¹H{¹¹B}: 400.1 MHz, ¹³C{¹H}: 100.6 MHz; ¹¹B: 128.4 MHz) at 298 K. Chemical shifts (δ) are given in ppm and internally referenced to the carbon nuclei (¹³C{¹H}) or residual protons (¹H) of the solvent. ¹¹B and ⁷⁷Se{¹H} NMR spectra were referenced to external standard [BF₃·OEt₂] or Me₂Se, respectively. High-resolution mass spectrometry was obtained from a Thermo Scientific Exactive Plus spectrometer. Cyclic voltammetry experiments were performed using a Gamry Instruments Reference 600 potentiostat.

Synthetic procedures

Synthesis of 1-O

Diborane(5) **1** (50.0 mg, 0.09 mmol) was dissolved in benzene (0.7 mL) and 10.3 mg (0.09 mmol) NMMO (*N*-methylmorpholine-*N*-oxide) were added. After stirring for one day at room temperature, all volatiles were removed *in vacuo* and the light yellow residue was extracted with hexane. Slow evaporation of solution at room temperature yielded **1-O** (40.6 mg, 0.07 mmol, 79%) as colourless crystals.


¹**H NMR** (500.1 MHz, C₆D₆): $\delta = 7.02$ (s, 1 H, aryl-C*H*), 6.87 (s, 1 H, aryl-C*H*), 6.81 (s, 1 H, aryl-C*H*), 6.77 (s, 1 H, aryl-C*H*), 6.75 (s, 1 H, aryl-C*H*), 6.68 (s, 1 H, aryl-C*H*), 6.66 (s, 1 H, aryl-C*H*), 6.44 (s, 1 H, aryl-C*H*), 3.87–3.85 (m, 1 H, B-C*H*), 3.43 (m, 2 H, C*H*₂), 2.96 (dd, ${}^{3}J_{\text{HH}} = 5.2$ Hz, ${}^{2}J_{\text{HH}} = 14$ Hz, 1 H, C*H*₂), 2.86–2.81 (m, 1 H, C*H*₂), 2.62 (dd, ${}^{3}J_{\text{HH}} = 3.2$ Hz, ${}^{2}J_{\text{HH}} = 14$ Hz, 1 H, C*H*₂), 2.32 (s, 3 H, C*H*₃), 2.29 (s, 6 H, C*H*₃), 2.25 (s, 3 H, C*H*₃), 2.18 (s, 3 H, C*H*₃), 2.12 (s, 3 H, C*H*₃), 2.11 (s, 3 H, C*H*₃), 2.06 (s, 6 H, C*H*₃), 1.86 (s, 3 H, C*H*₃), 1.83 (s, 3 H, C*H*₃) ppm.

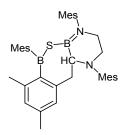
¹¹**B** NMR (160.5 MHz, C_6D_6): $\delta = 48.3$ (br s), 32.8 (br s) ppm.

¹³C{¹H} **NMR** (125.8 MHz, C_6D_6): $\delta = 144.63$ (s, C_q), 144.55 (s, C_q), 141.9 (s, C_q), 141.7 (s, C_q), 141.4 (s, C_q), 141.3 (s, C_q), 138.8 (s, C_q), 138.6 (s, C_q), 138.4 (s, C_q), 136.8 (s, C_q), 135.7 (s, C_q), 135.3 (s, C_q), 135.0 (s, C_q), 134.6 (s, C_q), 130.7 (s, aryl-CH), 129.7 (s, aryl-CH), 129.5 (s, aryl-CH), 129.4 (s, aryl-CH), 129.1 (s, aryl-CH), 128.8 (s, aryl-CH), 128.7 (s, aryl-CH), 128.3 (s, aryl-CH), 56.4 (br s, B-CH), 52.2 (s, CH₂), 49.3 (s, CH₂), 35.8 (s, CH₂), 22.3 (s, CH₃), 22.0 (s, CH₃), 21.5 (s, CH₃), 21.4 (s, CH₃), 21.3 (s, CH₃), 20.98 (s, CH₃), 20.97 (s, CH₃), 20.3 (s, CH₃), 19.8 (s, CH₃), 18.2 (s, CH₃), 17.0 (s, CH₃) ppm.

LIFDI-MS for [C₃₉H₄₈B₂N₂O] calcd: 582.3947; found: 582.3939.

Synthesis of 2-O

Diborane(5) **2** (30.0 mg, 0.04 mmol) was dissolved in benzene (0.7 mL) and NMMO (5.14 mg, 0.04 mmol) was added. After stirring for 3 h at room temperature a color change to yellow was observed. All volatiles were removed *in vacuo* and the yellow residue was extracted with hexane. Storage at room temperature of a saturated hexane solution yielded **2-O** as a yellow solid (19.0 mg, 0.03 mmol, 62%).


¹**H NMR** (500.1 MHz, C₆D₆): δ = 8.99–8.98 (m, 1 H, aryl-C*H*), 8.45–8.35 (m, 4 H, aryl-C*H*), 8.30 (s, 1 H, aryl-C*H*), 7.88–7.85 (m, 2 H, aryl-C*H*), 7.76–7.74 (m, 1 H, aryl-C*H*), 7.64–7.59 (m, 2 H, aryl-C*H*), 7.30–7.27 (m, 1 H, aryl-C*H*), 7.15–7.12 (m, 1 H, aryl-C*H*), 7.00–7.6.97 (m, 1 H, aryl-C*H*), 6.84–6.81 (m, 3 H, aryl-C*H*), 6.63 (s, 1 H, aryl-C*H*), 6.49 (s, 1 H, aryl-C*H*), 6.45–6.42 (m, 1 H, aryl-C*H*), 6.36–6.32 (m, 1 H, aryl-C*H*), 5.13 (s, 1 H, B-C*H*), 3.71–3.66 (m, 1 H, C*H*₂), 3.47–3.42 (m, 1 H, C*H*₂), 3.22–3.19 (m, 1 H, C*H*₂), 2.69–2.65 (m, 4 H, C*H*₂+C*H*₃), 3.17 (s, 3 H, C*H*₃), 2.06 (s, 3 H, C*H*₃), 2.01 (s, 3 H, C*H*₃), 1.87 (s, 3 H, C*H*₃), 1.80 (s, 3 H, C*H*₃) ppm.

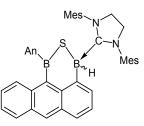
¹¹**B** NMR (160.5 MHz, C_6D_6): $\delta = 53.1$ (br s), 27.4 (br s) ppm.

¹³C{¹H} **NMR** (125.8 MHz, C_6D_6): $\delta = 147.4$ (s, aryl- C_q), 141.2 (s, aryl- C_q), 141.0 (s, aryl- C_q), 140.8 (br s, aryl- C_q), 137.6 (s, aryl- C_q), 136.6 (br s, aryl- C_q), 135.9 (br s, aryl- C_q), (s, aryl- C_q), 135.7 (s, aryl- C_q), 135.4 (s, aryl- C_q), 135.3 (s, aryl- C_q), 135.3 (s, aryl- C_q), 135.3 (s, aryl- C_q), 135.4 (s, aryl- C_q), 134.4 (s, aryl- C_q), 134.4 (s, aryl- C_q), 134.4 (s, aryl- C_q), 134.1 (s, aryl-CH), 132.9 (s, aryl- C_q), 132.5 (s, aryl- C_q), 131.8 (s, aryl- C_q), 131.5 (br s, aryl-CH), 131.4 (s, aryl- C_q), 130.5 (s, aryl-CH), 130.5 (s, aryl-CH), 130.0 (br s, aryl-CH), 129.4 (s, aryl-CH), 129.3 (s, aryl-CH), 129.2 (s, aryl-CH), 129.1 (s, aryl-CH), 129.0 (s, aryl-CH), 128.6 (s, aryl-CH), 128.6 (s, aryl-CH), 125.2 (s, aryl-CH), 125.1 (s, aryl-CH), 125.6 (s, aryl-CH), 125.5 (s, aryl-CH), 125.2 (s, aryl-CH), 125.1 (s, aryl-CH), 125.1 (s, aryl-CH), 59.9 (br s, CH), 53.9 (s, CH_2), 49.3 (s, CH_2), 21.0 (s, CH_3), 20.7 (s, CH_3), 20.6 (br s, CH_3), 19.8 (br s, CH_3), 18.8 (s, CH_3), 17.8 (s, CH_3) ppm.

LIFDI-MS for [C₄₉H₄₄B₂N₂O] calcd: 698.3634; found: 698.3626.

Synthesis of 1-S

Diborane(5) **1** (30.0 mg, 0.05 mmol) was dissolved in benzene (0.7 mL) and an excess of elemental sulfur (21.3 mg, 0.67 mmol) was added. Heating at 60 °C for three days afforded a yellow solution. All volatiles were removed *in vacuo* and hexane (0.9 mL) was added. A colorless solid precipitated, which was separated and washed with cold hexane (-30 °C) to yield **1-S** as a colourless solid (15.3 mg, 0.03 mmol, 48%). Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a saturated hexane solution at -30 °C.


¹**H NMR** (500.1 MHz, C₆D₆): $\delta = 7.02$ (s, 1 H, aryl-C*H*), 6.82 (s, 1 H, aryl-C*H*), 6.81 (s, 1 H, aryl-C*H*), 6.78 (s, 1 H, aryl-C*H*), 6.75 (s, 1 H, aryl-C*H*), 6.71 (s, 1 H, aryl-C*H*), 6.61 (s, 1 H, aryl-C*H*), 6.31 (s, 1 H, aryl-C*H*), 4.00 (t, ³*J*_{HH} = 3.9 Hz, 1 H, B-C*H*), 3.54 (dd, ³*J*_{HH} = 4.4 Hz, ²*J*_{HH} = 13.6 Hz, 1 H, C*H*₂), 3.39–3.31 (m, 2 H, C*H*₂), 3.03–2.97 (m, 1 H, C*H*₂), 2.83–2.77 (m, 2 H, C*H*₂), 2.31 (s, 3 H, C*H*₃), 2.27 (s, 6 H, C*H*₃), 2.20 (s, 3 H, C*H*₃), 2.19 (s, 6 H, C*H*₃), 2.17 (s, 3 H, C*H*₃), 2.12 (s, 3 H, C*H*₃), 2.09 (s, 3 H, C*H*₃), 2.00 (s, 3 H, C*H*₃), 1.90 (s, 3 H, C*H*₃) ppm.

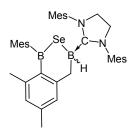
¹¹**B** NMR (160.5 MHz, C_6D_6): $\delta = 70.4$ (br s), 42.0 (br s) ppm.

¹³C{¹H} **NMR** (125.8 MHz, C_6D_6): $\delta = 145.0$ (s, C_q), 144.9 (s, C_q), 143.1 (s, C_q), 141.4 (s, C_q), 139.5 (s, C_q), 138.8 (s, C_q), 138.2 (s, C_q), 138.1 (s, C_q), 137.5 (s, C_q), 136.3 (s, C_q), 135.8 (s, C_q), 134.1 (s, C_q), 134.2 (s, C_q), 134.1 (s, C_q), 130.8 (s, aryl-CH), 129.9 (s, aryl-CH), 129.8 (s, aryl-CH), 129.7 (s, aryl-CH), 129.5 (s, aryl-CH), 129.3 (s, aryl-CH), 129.0 (s, aryl-CH), 60.1 (br s, B-CH), 52.1 (s, CH₂), 50.5 (s, CH₂), 36.9 (s, CH₂), 23.8 (s, CH₃), 22.9 (s, CH₃), 22.2 (s, CH₃), 21.24 (s, CH₃), 21.19 (s, CH₃), 20.99 (s, CH₃), 20.97 (s, CH₃), 20.6 (s, CH₃), 19.7 (s, CH₃), 18.3 (s, CH₃), 17.2 (s, CH₃) ppm.

LIFDI-MS for [C₃₉H₄₈B₂N₂S] calcd: 598.3719; found: 598.3705.

Synthesis of Int_2-S

Diborane(5) **2** (30.0 mg, 0.04 mmol) was suspended in benzene (0.7 mL) and an excess of elemental sulfur (5 mg, 0.16 mmol) was added. Heating at 60 °C for 24 h afforded a yellow suspension. After removal of the solvent, the resulting residue was dissolved in hexane and upon storage at -30 °C for 24 h a yellow precipitate was formed, which was dried *in vacuo* to yield **Int_2-S** as a yellow solid (10.3 mg, 0.01 mmol, 36%).


¹H{¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 9.49$ (dd, ⁴*J*_{HH} = 0.7 Hz, ³*J*_{HH} = 8.7 Hz, 1 H, aryl-C*H*), 8.42 (dd, ⁴*J*_{HH} = 0.7 Hz, ³*J*_{HH} = 8.7 Hz, 1 H, aryl-C*H*), 8.14 (s, 1 H, aryl-C*H*), 8.05–8.03 (m, 2 H, aryl-C*H*), 7.83 (dd, ⁴*J*_{HH} = 1.3 Hz, ³*J*_{HH} = 6.4 Hz, 1 H, aryl-C*H*), 7.82–7.78 (m, 1 H, aryl-C*H*), 7.58–7.53 (m, 3 H, aryl-C*H*), 7.50 (d, ³*J*_{HH} = 8.5 Hz, 1 H, aryl-C*H*), 7.28–7.25 (m, 1 H, aryl-C*H*), 6.86–6.83 (m, 1 H, aryl-C*H*), 6.79–6.78 (m, 1 H, aryl-C*H*), 6.68–6.65 (m, 1 H, aryl-C*H*), 6.50–6.47 (m, 1 H, aryl-C*H*), 6.25 (s, 2 H, aryl-C*H*), 6.04–6.01 (m, 1 H, aryl-C*H*), 5.92 (s, 1 H, aryl-C*H*), 3.72 (br s, 1 H, B*H*), 3.02–2.92 (m, 4 H, C*H*₂), 2.39 (s, 6 H, C*H*₃), 2.08 (s, 6 H, C*H*₃), 1.85 (s, 6 H, C*H*₃) ppm.

¹¹**B** NMR (128.4 MHz, C_6D_6): $\delta = 69.8$ (br s), -16.0 (s, *B*H) ppm.

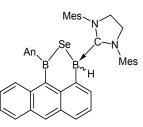
¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta = 150.5$ (s, C_q), 141.0 (s, C_q), 137.8 (s, C_q), 136.7 (s, C_q), 135.9 (s, C_q), 134.8 (s, C_q), 134.7 (s, C_q), 133.8 (s, C_q), 133.7 (s, C_q), 132.9 (s, aryl-CH), 132.4 (s, C_q), 132.1 (s, C_q), 132.0 (s, aryl-CH), 131.2 (s, C_q), 130.0 (s, aryl-CH), 129.8 (s, aryl-CH), 129.3 (s, aryl-CH), 129.1 (s, aryl-CH), 127.5 (s, aryl-CH), 126.5 (s, aryl-CH), 124.9 (s, aryl-CH), 124.5 (s, aryl-CH), 124.5 (s, aryl-CH), 124.4 (s, aryl-CH), 124.2 (s, aryl-CH), 124.1 (s, aryl-CH), 123.8 (s, aryl-CH), 49.8 (s, CH₂), 20.8 (s, CH₃), 18.8 (s, CH₃), 18.6 (s, CH₃) ppm.

LIFDI-MS for [C₄₉H₄₄B₂N₂S] calcd: 714.3406; found: 714.3393.

Synthesis of Int_1-Se

Diborane(5) **1** (50.0 mg, 0.09 mmol) was dissolved in benzene (0.7 mL) and elemental selenium (28.0 mg, 0.36 mmol) was added. Heating at 60 °C for 5 days afforded a yellow solution, which was filtered prior to removal of all volatiles *in vacuo*. The yellow residue was dissolved in a mixture of hexane and toluene (1:1) and stored at -30 °C. The formed solid was separated and dried *in vacuo* to yield Int_1-Se (43.8 mg, 0.07 mmol, 77%) as a colorless solid.

¹H{¹¹B} NMR (400 MHz, C₆D₆): $\delta = 6.97$ (s, 1 H, aryl-CH), 6.78 (s, 1 H, aryl-CH), 6.76 (s, 1 H, aryl-CH), 6.72 (s, 2 H, aryl-CH), 6.65 (s, 2 H, aryl-CH), 6.61 (s, 1 H, aryl-CH), 3.09–3.00 (m, 4 H, CH₂), 2.61 (br s, 1 H, BH), 2.50 (s, 3 H, CH₃), 2.31 (s, 6 H, CH₃), 2.27 (s, 6 H, CH₃), 2.21 (d, ²*J*_{HH} = 13 Hz, 1 H, CH₂), 2.18 (s, 3 H, CH₃), 2.07 (s, 3 H, CH₃), 2.06 (s, 3 H, CH₃), 2.05 (s, 6 H, CH₃), 2.04 (s, 3 H, CH₃), 1.87–1.81 (m, 1 H, CH₂) ppm.


¹¹**B** NMR (128.4 MHz, C_6D_6): δ = 76.5 (br s), -19.7 (s, *B*H) ppm.

¹³C{¹H} **NMR** (125.8 MHz, C₆D₆): $\delta = 193.6$ (br s, $C_{Carbene}$), 153.7 (s, C_q), 148.8 (br s, C_q), 140.9 (s, C_q), 138.9 (s, C_q), 138.7 (s, C_q), 137.6 (br s, C_q), 137.4 (s, C_q), 135.9 (s, C_q), 135.6 (s, C_q), 135.3 (s, C_q), 135.2 (s, C_q), 134.9 (s, C_q), 129.9 (s, aryl-CH), 129.6 (s, aryl-CH), 128.7 (s, aryl-CH), 128.5 (s, aryl-CH), 128.4 (s, aryl-CH), 127.4 (s, aryl-CH), 50.1 (s, CH₂), 31.0 (br s, CH₂), 24.2 (s, CH₃), 23.5 (s, CH₃), 21.7 (s, CH₃), 21.5 (s, CH₃), 21.3 (s, CH₃), 21.0 (s, CH₃), 19.0 (s, CH₃), 18.5 (s, CH₃) ppm.

⁷⁷Se{¹H} NMR (95.4 MHz, C_6D_6): $\delta = 178.5$ ppm.

LIFDI-MS for $[C_{39}H_{48}B_2N_2Se - H+]$ calcd: 645.3085; found: 645.3081.

Synthesis of Int_2-Se

Diborane(5) **2** (30.0 mg, 0.04 mmol) was dissolved in toluene (0.6 mL) and an excess of selenium (20.0 mg, 0.25 mmol) was added. Heating at 100 °C for three days afforded an orange solution. After removal of all volatiles *in vacuo* the residue was extracted with hexane. Upon storage of this solution at -30 °C a yellow solid formed, which was isolated and dried *in vacuo* to yield **Int_2-Se** (19.3 mg, 0.03 mmol, 58%) as a yellow solid.

¹H{¹¹B} NMR (400 MHz, C₆D₆): $\delta = 9.64$ (d, ³*J*_{HH} = 8.6 Hz, 1 H, aryl-C*H*), 8.47 (d, ³*J*_{HH} = 8.8 Hz, 1 H, aryl-C*H*), 8.13 (s, 1 H, aryl-C*H*), 8.07 (s, 1 H, aryl-C*H*), 8.02 (d, ³*J*_{HH} = 8.8 Hz, 1 H, aryl-C*H*), 7.92 (d, ³*J*_{HH} = 5.7 Hz, 1 H, aryl-C*H*), 7.82 – 7.79 (m, 1 H, aryl-C*H*), 7.59 – 7.51 (m, 3 H, aryl-C*H*), 7.46 (d, ³*J*_{HH} = 8.6 Hz, 1 H, aryl-C*H*), 7.27 – 7.23 (m, 1 H, aryl-C*H*), 6.85 – 6.79 (m, 1 H, aryl-C*H*), 6.67 – 6.62 (m, 2 H, aryl-C*H*), 6.52 – 6.48 (m, 1 H, aryl-C*H*), 6.29 (s, 2 H, aryl^{Mes}-C*H*), 6.07 – 6.03 (m, 1 H, aryl-C*H*), 5.92 (s, 2 H, aryl^{Mes}-C*H*), 3.85 (br s, 1 H, B*H*), 3.05 – 2.91 (m, 4 H, C*H*₂C*H*₂), 2.43 (s, 6 H, C*H*₃), 2.09 (s, 6 H, C*H*₃), 1.85 (s, 6 H, C*H*₃) ppm.

¹¹**B** NMR (128.4 MHz, C_6D_6): $\delta = 76.4$ (br s), -18.6 (s, *B*H) ppm.

¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta = 141.5$ (br s, C_q), 141.3 (s, C_q), 137.8 (s, C_q), 137.5 (s, aryl-CH), 136.7 (s, C_q), 134.8 (s, C_q), 134.7 (s, C_q), 133.9 (s, C_q), 133.5 (s, aryl-CH), 133.4 (s, C_q), 132.5 (s, C_q), 132.4 (s, C_q), 132.0 (s, aryl-CH), 131.9 (s, C_q), 131.2 (s, C_q), 130.6 (s, C_q), 130.2 (s, aryl-CH), 129.9 (s, aryl-CH), 129.4 (s, aryl^{Mes}-CH), 129.2 (s, aryl^{Mes}-CH), 128.9 (s, aryl-CH), 128.6 (s, aryl-CH), 126.5 (s, aryl-CH), 124.9 (s, aryl-CH), 124.5 (s, aryl-CH), 124.4 (s, aryl-CH), 124.2 (s, aryl-CH), 124.2 (s, aryl-CH), 124.0 (s, aryl-CH), 123.6 (s, aryl-CH), 49.8 (s, CH₂), 20.8 (s, CH₃), 18.8 (s, CH₃), 18.8 (s, CH₃) ppm.

Note: The ⁷⁷Se NMR resonance could not be detected presumably due to the strong coupling to the two quadrupolar boron nuclei.

LIFDI-MS for [C₄₉H₄₄B₂N₂Se] calcd: 762.2850; found: 762.2833.

NMR spectra of isolated compounds

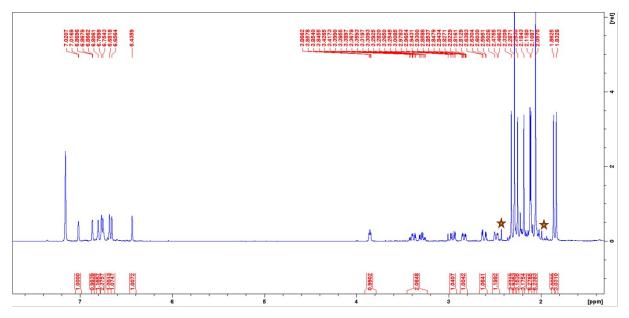


Figure S1. ¹H NMR spectrum of 1-O in C_6D_6 . The resonances marked with \bigstar belong to unknown impurities.

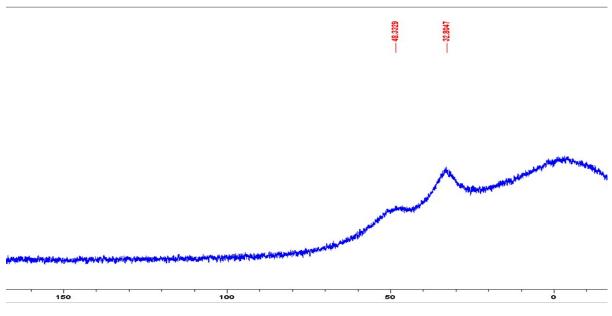
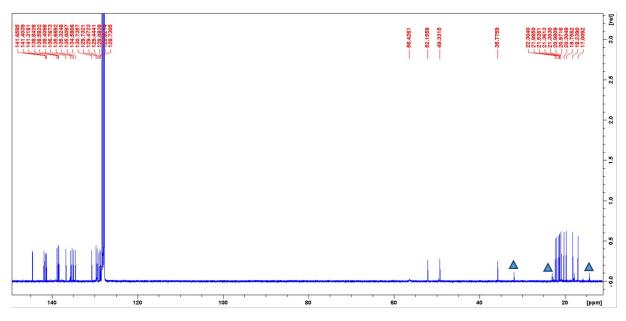



Figure S2. ¹¹B NMR spectrum of 1-O in C_6D_6 .

Figure S3. ¹³C{¹H} NMR spectrum of **1-O** in C₆D₆. The resonances marked with \blacktriangle belong to residual hexane.

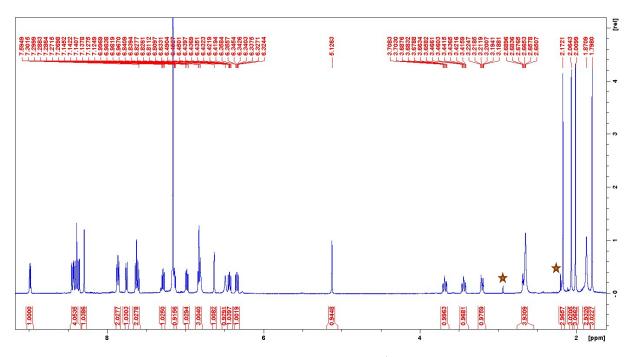


Figure S4. ¹H NMR spectrum of 2-O in C_6D_6 . The resonances marked with \bigstar belong to unknown impurities.

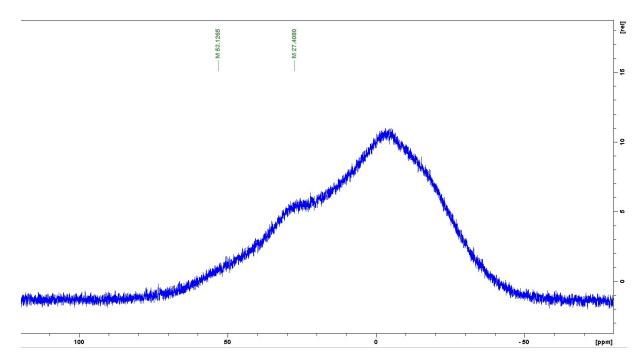


Figure S5. ¹¹B NMR spectrum of 2-O in C_6D_6 .

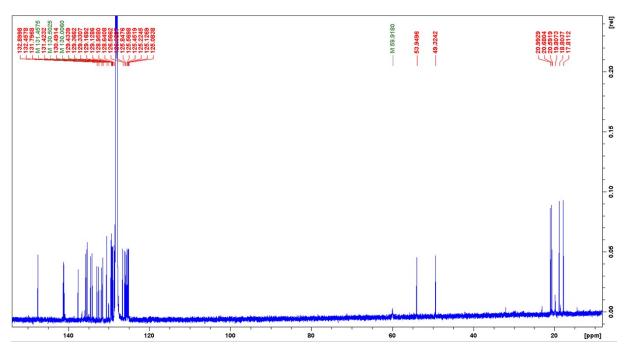


Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of 2-O in C₆D₆.

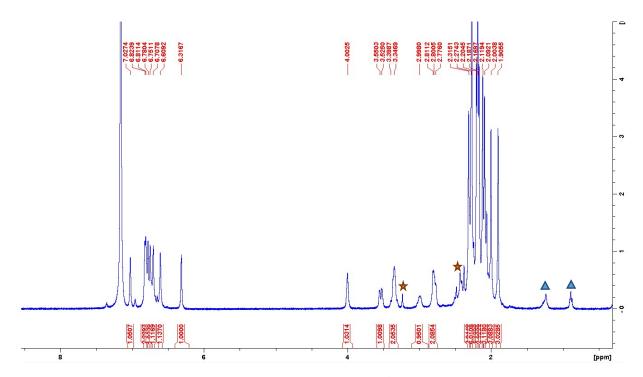
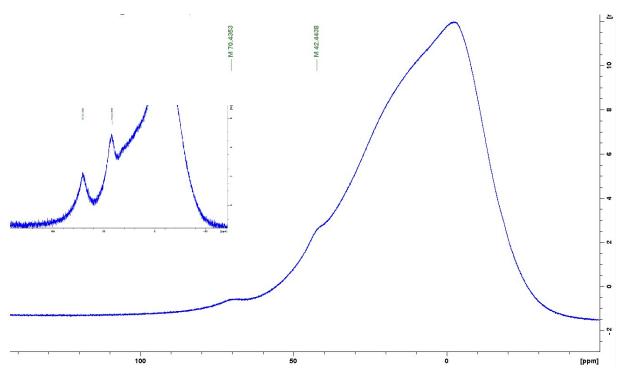
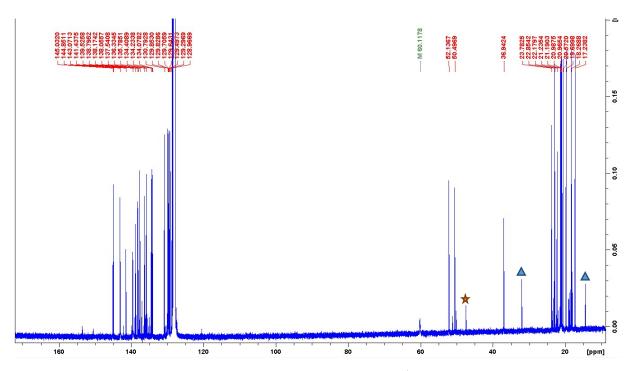
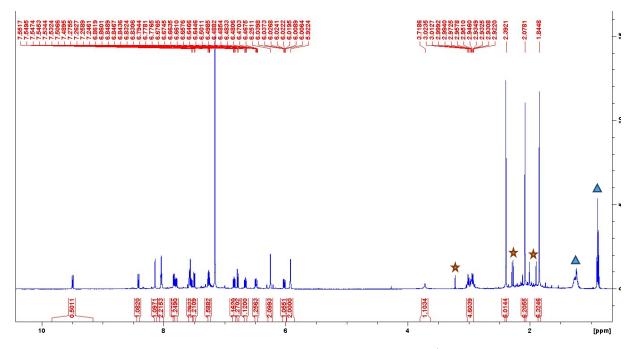


Figure S7. ¹H NMR spectrum of 1-S in C₆D₆. The resonances marked with \bigstar belong to unknown impurities. The resonances marked with \bigstar belong to residual hexane.

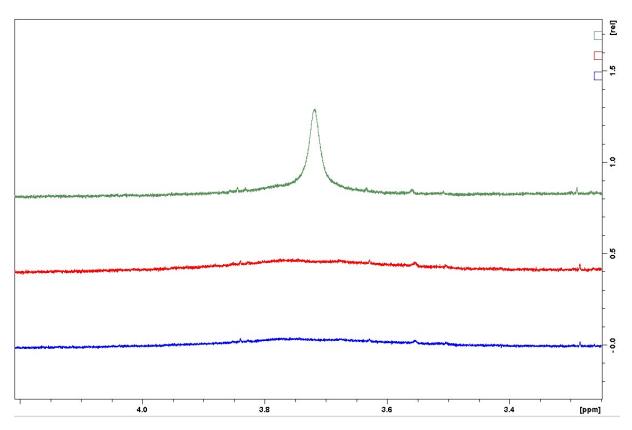

Figure S8. ¹¹B NMR spectrum of 1-S in C_6D_6 including an excerpt of the two broad boron resonances for a better illustration.

Figure S9. ¹³C{¹H} NMR spectrum of **1-S** in C₆D₆. The resonance marked with \bigstar belongs to unknown impurities. The resonances marked with \bigstar belong to residual hexane.

Figure S10. ¹H{¹¹B} NMR spectrum of **Int_2-S** in C₆D₆. The resonances marked with \bigstar belong to unknown impurities. The resonances marked with \bigstar belong to residual hexane.

Figure S11. Width changes of the B-H resonance ($\delta = 3.72$ ppm) in the ¹H NMR spectrum of **Int_2-S** in C₆D₆ at RT. Bottom (blue): non-decoupled ¹H NMR spectrum; middle (red): decoupler offset of 71.0 ppm; top (green): decoupler offset of -16.0 ppm.

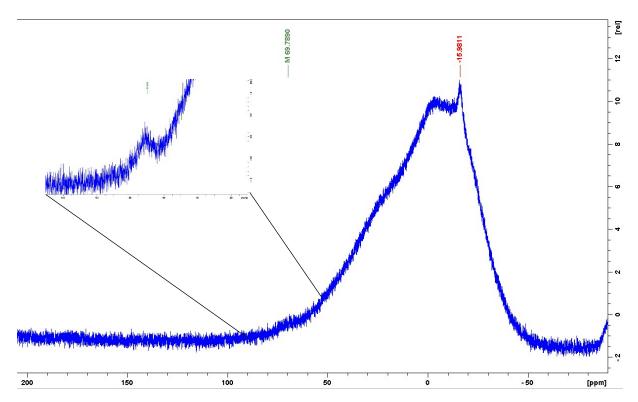


Figure S12. ¹¹B NMR spectrum of Int_2-S in C₆D₆ including an excerpt of the broad boron resonance at 67.8 ppm.

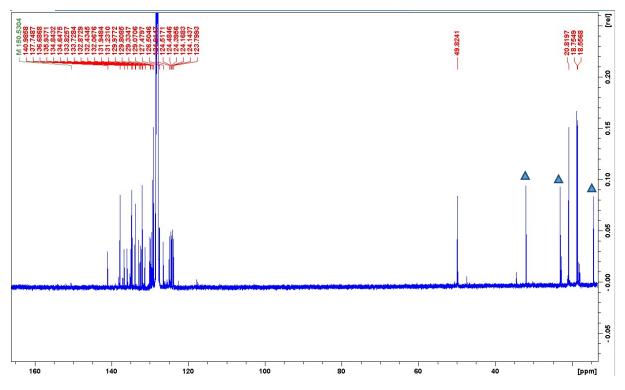
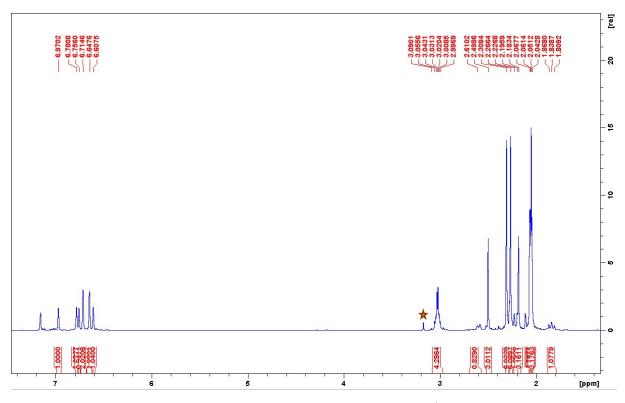



Figure S13. ¹³C{¹H} NMR spectrum of Int_2-S in C₆D₆. The resonances marked with \triangle belong to residual hexane.

Figure S14. ¹H{¹¹B} NMR spectrum of **Int_1-Se** in C₆D₆. The resonance marked with \bigstar belongs to unknown impurities.

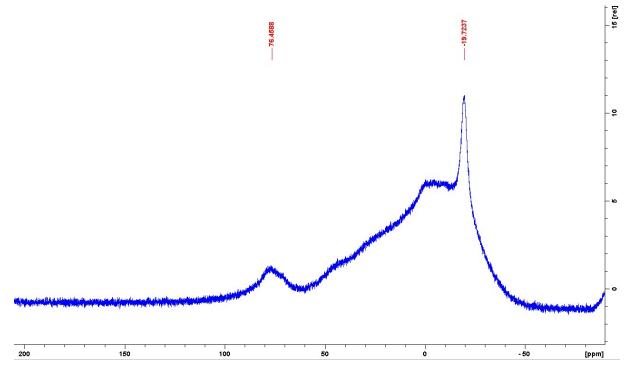
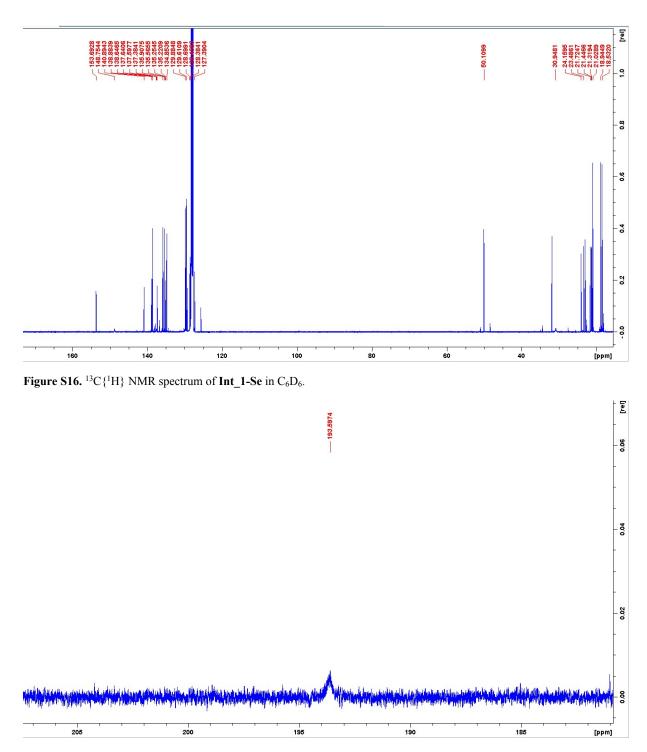



Figure S15. ¹¹B NMR spectrum of Int_1-Se in C₆D₆.

Figure S17. ¹³C {¹H} NMR spectrum of **Int_1-Se** in C₆D₆ (low field excerpt for illustration of the resonance of the carbene carbon atom).

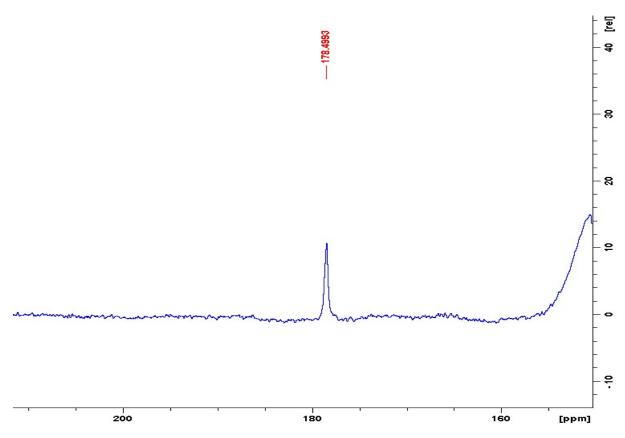
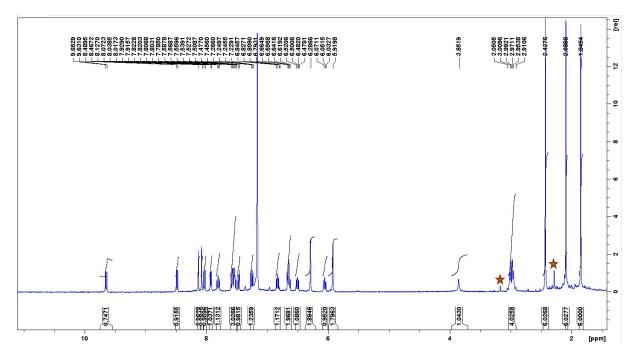



Figure S18. ⁷⁷Se $\{^{1}H\}$ NMR spectrum of Int_1-Se in C₆D₆.

Figure S19. ¹H{¹¹B} NMR spectrum of **Int_2-Se** in C₆D₆. The resonances marked with \bigstar belong to unknown impurities.

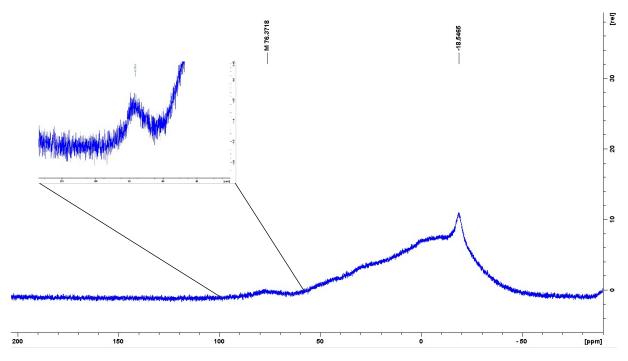
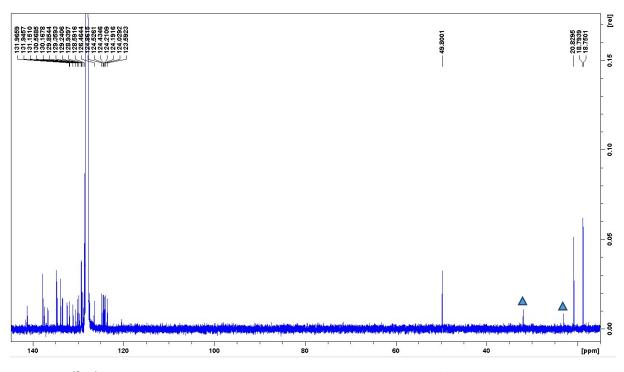
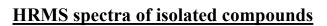




Figure S20. ¹¹B NMR spectrum of Int_2-Se in C₆D₆ including an excerpt of the broad boron resonance at 76.4 ppm.

Figure S21. ¹³C{¹H} NMR spectrum of **Int_2-Se** in C₆D₆. The resonances marked with \triangle belong to residual hexane.

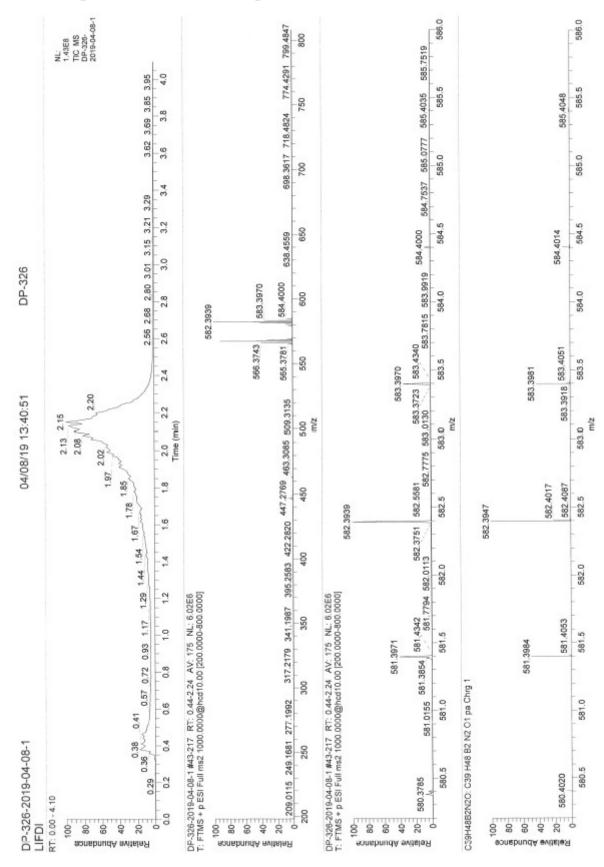


Figure S22. HRMS spectrum of 1-O.

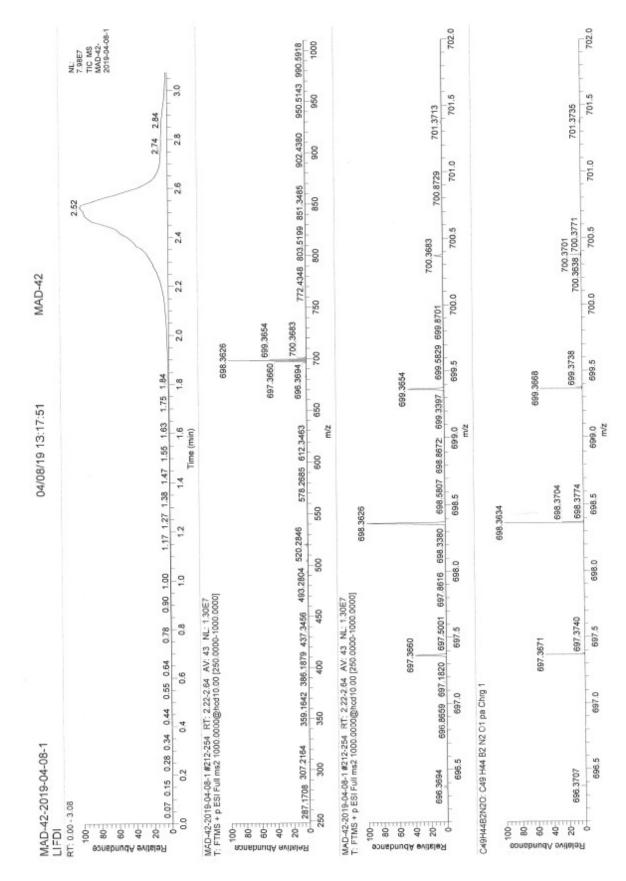


Figure S23. HRMS spectrum of 2-O.

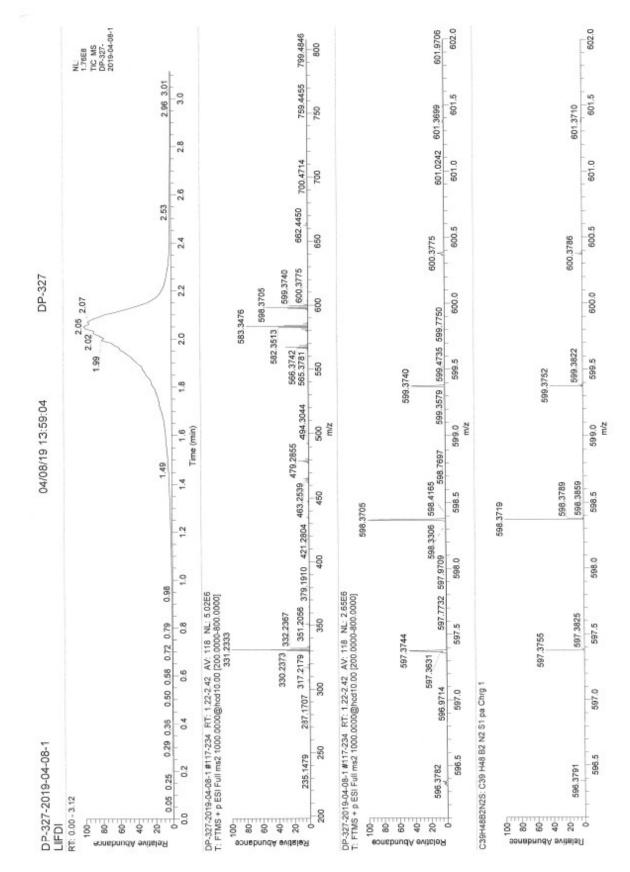


Figure S24. HRMS spectrum of 1-S.

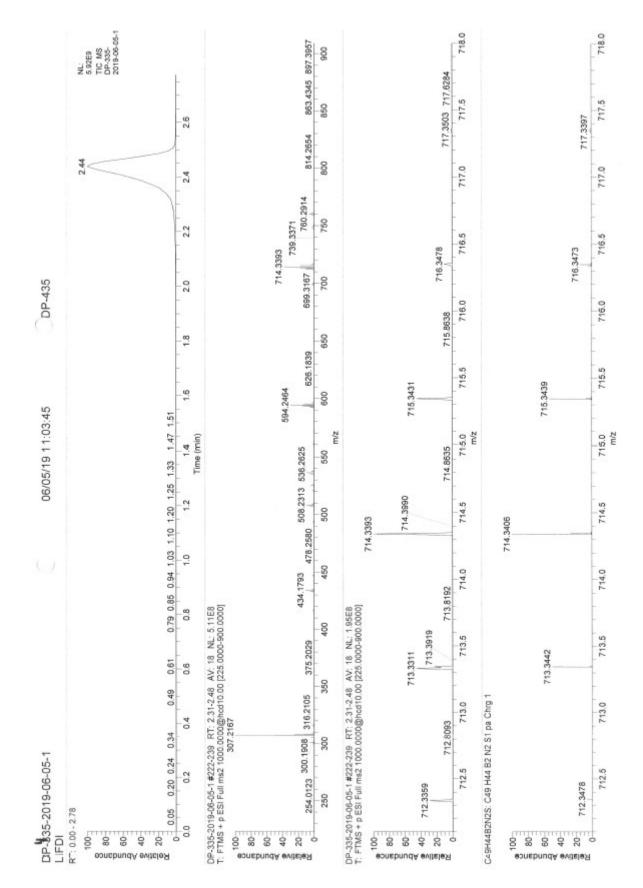


Figure S25. HRMS spectrum of Int_2-S.

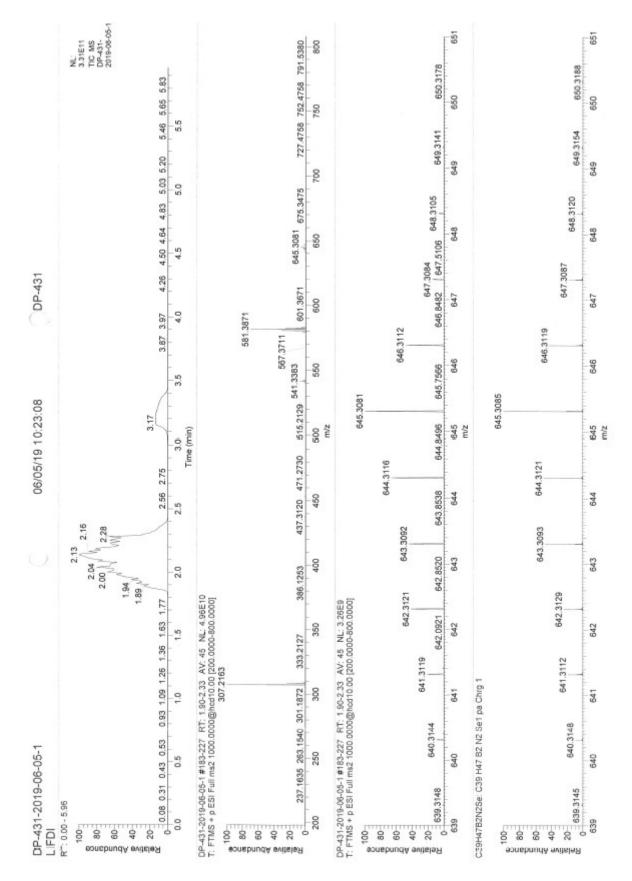
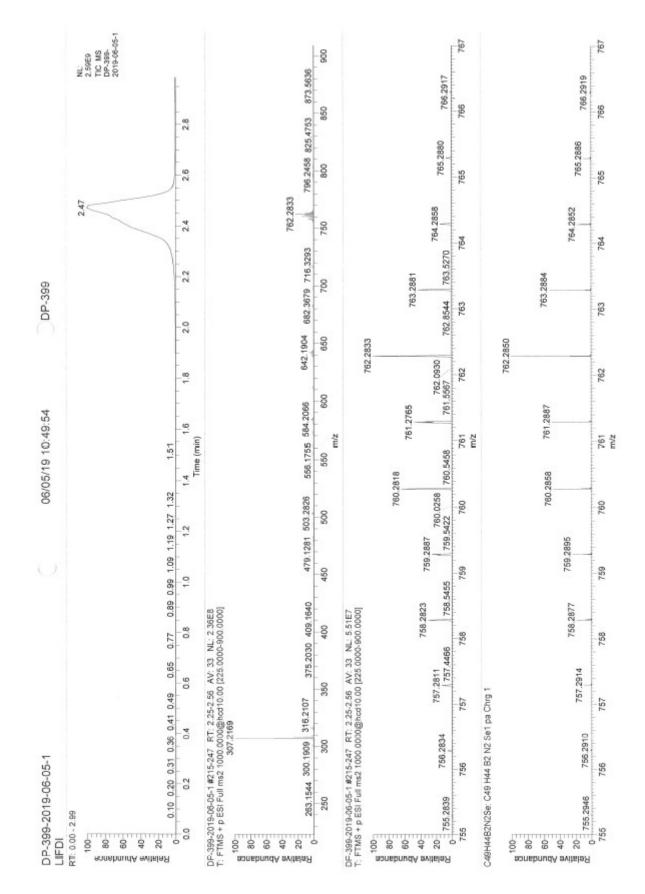
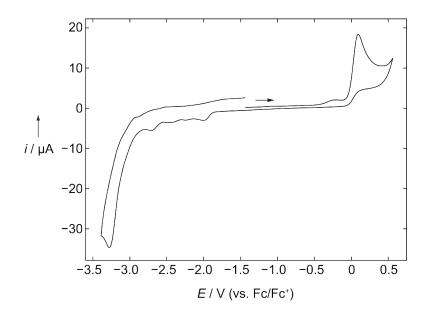
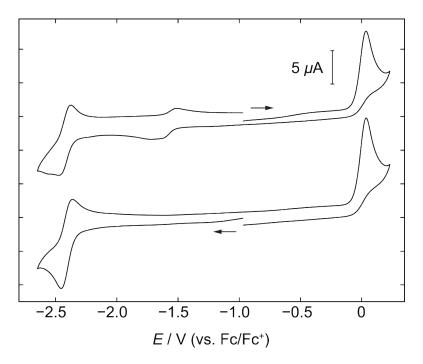


Figure S26. HRMS spectrum of Int_1-Se.


Figure S27. HRMS spectrum of Int_2-Se.

Cyclic voltammetry

Cyclic voltammetry experiments were performed using a Gamry Instruments Reference 600 potentiostat. A standard three-electrode cell configuration was employed using a platinum disk working electrode, a platinum wire counter electrode, and a silver wire, separated by a *Vycor* tip, serving as the reference electrode. Formal redox potentials are referenced to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple. Tetra-*n*-butylammonium hexafluorophosphate ([nBu_4N][PF₆]) was employed as the supporting electrolyte. Compensation for resistive losses (*iR* drop) was employed for all measurements. For all measured cyclic voltammograms, the scan rate was 250 mV/s.

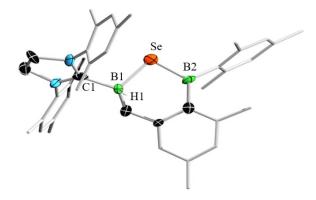

Figure S28. Cyclic voltammogram of 1 in THF. Formal potentials for oxidation: $E_{pa} = +0.10$ V (irreversible); for reduction: $E_{pc} = -3.25$ V (irreversible).

Figure S29. Cyclic voltammograms of **2** with different scan directions in THF. Formal potentials for oxidation: $E_{pa} = +0.05$ V (irreversible); for reduction: $E_{1/2} = -2.41$ V (reversible).

X-ray crystallographic details

The crystal data of **1-O** were collected on a BRUKER X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The crystal data of **1-S** and **Int_1-Se** were collected on a BRUKER D8 QUEST diffractometer with a CMOS area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structures were solved using intrinsic phasing method,³ refined with the SHELXL program⁴ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealised geometric positions. All hydrogen atoms were assigned to idealised positions with exception of the boron-bound hydride in **Int_1-Se**, which was located in the difference Fourier map and refined freely.

Figure S30. Crystallographically-determined solid-state structure of **Int_1-Se**. Atomic displacement ellipsoids are depicted at the 50% probability level and omitted for the ligand periphery. Hydrogen atoms except H1 are omitted for clarity. The structure is depicted for proof of connectivity only; the data are not sufficient for discussion of bond lengths and angles.

Crystal data for **1-O**: C₃₉H₄₈B₂N₂O, $M_r = 582.41$, colourless block, $0.201 \times 0.189 \times 0.121$ mm³, monoclinic space group $P2_1/c$, a = 12.017(5) Å, b = 8.345(4) Å, c = 33.497(13) Å, $\beta = 94.968(14)^\circ$, V = 3346(3) Å³, Z = 4, $\rho_{calcd} = 1.156$ g·cm⁻³, $\mu = 0.067$ mm⁻¹, F(000) = 1256, T = -173 K, $R_I = 0.0920$, $wR^2 = 0.1295$, 6849 independent reflections $[20 \le 52.744^\circ]$ and 408 parameters.

Crystal data for **1-S**: C₃₉H₄₈B₂N₂S, $M_r = 598.47$, yellow block, $0.377 \times 0.328 \times 0.172$ mm³, monoclinic space group $P2_1/c$, a = 12.3083(17) Å, b = 8.2219(11) Å, c = 34.364(5) Å, $\beta = 93.549(8)^\circ$, V = 3470.9(8) Å³, Z = 4, $\rho_{calcd} = 1.145$ g·cm⁻³, $\mu = 0.122$ mm⁻¹, F(000) = 1288, T = -173 K, $R_I = 0.0526$, $wR^2 = 0.1195$, 6825 independent reflections [2 $\theta \le 52.044^\circ$] and 412 parameters.

Crystal data for Int_1-Se: C₁₅₆H₁₉₂B₈N₈Se₄, $M_r = 2581.48$, yellow block, $0.083 \times 0.021 \times 0.002 \text{ mm}^3$, triclinic space group P1, a = 11.422(4) Å, b = 13.831(4) Å, c = 21.994(7) Å, $\alpha = 90.009(10)^\circ$, $\beta = 90.034(8)^\circ$, $\gamma = 90.047(13)^\circ$, V = 3474.5(19) Å³, Z = 1, $\rho_{calcd} = 1.234 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.110 \text{ mm}^{-1}$, F(000) = 1360, T = 139(2) K, R1 = 0.1991, $wR^2 = 0.2380$, 22026 independent reflections [2 $\theta \le 49.426^\circ$] and 1646 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication nos. CCDC: 1922537 (1-O), 1922538 (1-S). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

References

- P. Bissinger, H. Braunschweig, A. Damme, R. D. Dewhurst, T. Kupfer, K. Radacki and K. Wagner, J. Am. Chem. Soc. 2011, 133, 19044-19047.
- S. R. Wang, D. Prieschl, J. D. Mattock, M. Arrowsmith, C. Pranckevicius, T. E. Stennett, R.
 D. Dewhurst, A. Vargas and H. Braunschweig, *Angew. Chem. Int. Ed.* 2018, 57, 6347-6351.
- 3 G. Sheldrick, *Acta Cryst.* 2015, **A71**, 3–8.
- 4 G. Sheldrick, *Acta Cryst.* 2008, A64, 112–122.