Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Stabilization of 4.5 V Cr^{4+}/Cr^{3+} redox reaction in NASICON-type Na₃Cr₂(PO₄)₃ by Ti substitution

Kosuke Kawai,[†] Daisuke Asakura¹, Shin-ichi Nishimura,^{†,‡,} and Atsuo Yamada^{†,‡,*}

[†]Department of Chemical System Engineering, School of Engineering, The University of Tokyo,

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

¹Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and

Technology (AIST), Tsukuba, Ibaraki 305-8564, Japan

[‡]Elemental Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Nishikyo-ku,

Kyoto 615-8510, Japan

*yamada@chemsys.t.u-tokyo.ac.jp

Experimental Details

Synthesis. NCTP powder was synthesized through the classical solid-state method. Stoichiometric amount of $Cr(OH)_3$ (Japan Pure Chemical Co., Ltd.), TiO₂ (anatase-type, first grade, Wako), NH₄H₂PO₄ (Wako) and NaHCO₃ (Wako) were mixed by planetary ball milling at 400 rpm for 12 hours. This mixture was formed to a pellet and sintered for 12 hours under argon flow three times at 850, 930 and 950 °C with two intermediate grindings. The final product was mixed with 5 wt% acetylene black (Li-400, DENKA) using the same instrument at 200 rpm for 4 hours. It was pelletized and then sintered under argon flow at 800 °C for 8 hours.

SEM. Resultant composite of NCTP and acetylene black (NCTP/C) was observed by a field emission scanning electron microscope (FE-SEM, S-4800, HITACHI) with an acceleration voltage of 1 kV.

Electrochemical Measurement. For fabrication of working electrode, 80 wt% NCTP/C, additional 10 wt% acetylene black and 10 wt% poly(vinylidene difluoride) (KUREHA) were mixed in N-methyl pyrrolidone (Kanto Chemical Co., Inc., min. 99.0 %) overnight, and the slurry was spread on an Al foil as a current collector followed by drying at 65 °C overnight. 2032-type coin cells were assembled under an argon-filled grove box. Counter electrode was Na metal (Wako). Electrolyte was 1 M NaPF₆ PC (battery grade, Kishida Chemical). Separator was glass fibers (GB-100R, Advantec) dried at 180 °C under vacuum condition overnight. Galvanostatic charge/discharge measurements were performed by a potentiogalvanostat, TOSCAT (TOYO corporation). For *ex situ* analysis, cells were disassembled in the same grove box and collected electrodes were rinsed by dimethyl carbonate three times and dried there.

XRD Analysis. Powder X-ray diffraction (XRD) patterns were collected at the beamline 8B in Photon Factory (PF), High Energy Accelerator Research Organization (KEK), Tsukuba, Japan. The wavelength was calibrated to be 1.237088 Å by a standard reference material, Si (SRM640d. NIST). Borosilicate glass capillaries (Hilgenberg GmbH or Müller GmbH) were used as sample holders. The data were analyzed by Rietveld refinement program, Z-Rietveld (KEK).¹ The crystal structure was drawn by VESTA.²

For electrochemical *in situ* XRD measurement, we employed a two-axis powder diffractometer (Bruker-AXS D8 ADVANCE) in the Bragg-Brentano geometry equipped with a Co $K\alpha$ radiation source (35 kV, 40 mA), a Fe foil as a $K\beta$ filter, and a linear position-sensitive detector LYNX-EYE (Bruker-AXS). A modified Swagelok-type cell which has a beryllium X-ray window was used.³ The *in situ* cell was operated by a potentiogalvanostat, VMP3 (Bio Logic). Working electrode for the *in situ* XRD was fabricated by forming a mixture of 90 wt% NCTP/C, additional 5 wt% acetylene black and 5 wt% polytetrafluoroethylene (PTFE) to be a circular sheet with a diameter of 12 mm.

X-ray Absorption Spectroscopy. *Ex situ* soft X-ray absorption spectroscopy (XAS) were conducted at BL-7A of the Photon Factory, KEK. Electrodes were attached with carbon tapes on the sample holders in an Ar-filled glovebox and were transferred to a vacuum chamber using a transfer vessel without air exposure. Bulk-sensitive partial-fluorescence-yield (PFY) mode was adopted for O *K*-edge and Ti $L_{2,3}$ -edge and inverse PFY (IPFY) mode for Cr $L_{2,3}$ -edge XAS. IPFY spectra were calculated from inverse of integrated O *K*-edge emission and free from self-absorption and saturation effects.⁴⁻⁶ Surface-sensitive total-electron-yield (TEY) mode was also employed. Simulation of Cr and Ti $L_{2,3}$ -edge XAS was performed in the charge-transfer multiplet (CTM) approach with the CTM4XAS program based on Cowan code.⁷ This method uses some adjustable parameters to imitate the ground and excited states of transition metals surrounded by ligands representing orbital interactions empirically.

- 1. R. Oishi-Tomiyasu, M. Yonemura and T. Morishima, J. Appl. Crystallogr., 2012, 45, 299–308.
- 2. K. Momma and F. Izumi, J. Appl. Crystallogr., 2008, 41, 653–658.
- 3. J. B. Leriche et al., J. Electrochem. Soc., 2010, 157, A606–A610.
- 4. A. J. Achkar et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83, 081106(R).
- 5. A. J. Achkar et al., Sci. Rep., 2011, 1, 182.
- 6. D. Asakura et al., AIP Adv., 2016, 6, 035105.
- 7. E. Stavitski and F. M. F. de Groot, *Micron*, 2010, 41, 687–694.

Fig. S1 Secondary electron micrograph of the as synthesized NCTP/C powder.

Fig. S2 Galvanostatic charge-discharge curves of NCTP/C electrode in Na half-cell at a rate of 0.1 C between 1.5 and 4.7 V vs. Na/Na⁺.

Fig. S3 *Ex situ* Cr $L_{2,3}$ -edge absorption spectra of NCTP/C electrode at pristine, 1st full-charged and full-discharged states obtained in surface-sensitive total electron yield (TEY) mode. Enlarged view in the excitation photon energy range between 575 and 584 eV are shown on the right side.

Fig. S4 *Ex situ* O *K*-edge absorption spectra of NCTP/C electrode at pristine, 1st full-charged and full-discharged states obtained in surface-sensitive partial fluorescence yield (PFY) mode.

Fig. S5 *Ex situ* Ti $L_{2,3}$ -edge absorption spectra of NCTP/C electrode at pristine, 1st full-charged and full-discharged states obtained in (a) bulk-sensitive partial fluorescence yield (PFY) and (b) surface-sensitive total electron yield (TEY) mode.

Fig. S6 Experimental Ti $L_{2,3}$ -edge X-ray absorption spectrum of pristine NCTP/C electrode (solid black line) and calculated one for Ti⁴⁺ in O_h symmetry (red dashed line). Parameters used for these simulations are listed in Table S5.

Fig. S7 The comparison of the calculated spectrum for Cr^{4+} in O_h symmetry with the original Cr $L_{2,3}$ -edge X-ray absorption spectrum of 1st full-charged NCTP and the difference spectra obtained by subtracting the 0.3- or 0.5-multipled spectrum of 1st full-discharged NCTP from the original one of 1st full-charged NCTP.

Table S1. Structural	l parameters from Rietveld refinement of synchr	otron powder X-ray diffraction
for pristine NCTP/C	C electrode.	

Chemical formula : Na ₂ CrTi(PO ₄) ₃							
Space group : R	3 <i>c</i> , Formula weight	z = 430.7567, Z = 6					
<i>a</i> = 8.56002(5) Å	A, c = 21.7267(3) Å,	V = 1378.71 Å ³					
$R_{\rm Bragg} = 3.57 \%,$	$R_{\rm wp} = 2.08 \%, R_{\rm p} =$	1.51 %, $R_{wp}/R_e = 1$	1.53				
Atomic coordinate	ates						
Atom	Wyckoff site	x	У	z	Occupancy	$B_{ m eq}~or~B_{ m iso}$ / ${ m \AA}^2$	
Na(1)	6 <i>b</i>	0	0	0	1	4.57(13)	
Na(2)	18e	0.6329(7)	0	0.25	0.33	3.23(3)	
Cr	12 <i>c</i>	0	0	0.14573(4)	0.5	0.28(3)	
Ti	12 <i>c</i>	0	0	0.14573(4)	0.5	0.28(3)	
Р	18 <i>e</i>	0.28821(14)	0	0.25	1	0.59(3)	
O (1)	36 <i>f</i>	0.1763(3)	-0.0259(3)	0.19380(9)	1	1.13(5)	
O(2)	36 <i>f</i>	0.3066(2)	0.8304(2)	0.25589(9)	1	0.35(5)	
Site	U ₁₁ / Å	U22 / Å	U ₃₃ / Å	U_{12} / Å	U ₁₃ / Å	U ₂₃ / Å	
Na(1)	0.079(2)	0.079(2)	0.016(2)	0.0394(12)	0	0	
Na(2)	0.025(5)	0.027(5)	0.071(6)	0.014(3)	0.0102(19)	0.020(4)	

Table S2. Structural parameters from Rietveld refinement of synchrotron powder X-ray diffraction

 for 2nd full-charged NCTP/C electrode.

Chemical formula : NaCrTi(PO ₄) ₃							
Space group : R	3 <i>c</i> , Formula weight	z = 407.7670, Z = 6					
a = 8.42637(6) Å	Å, <i>c</i> = 21.6801(3) Å,	V = 1333.13 Å ³					
$R_{\rm Bragg} = 3.84 \%,$	$R_{\rm wp} = 2.08 \%, R_{\rm p} =$	1.49 %, $R_{\rm wp}/R_{\rm e} = 1$	1.53				
Atomic coordin	ates						
Atom	Wyckoff site	x	у	z	Occupancy	$B_{ m eq} \ or \ B_{ m iso}$ / ${ m \AA}^2$	
Na	6 <i>b</i>	0	0	0	1	2.07(8)	
Cr	12 <i>c</i>	0	0	0.14500(4)	0.5	0.32(3)	
Ti	12 <i>c</i>	0	0	0.14500(4)	0.5	0.32(3)	
Р	18 <i>e</i>	0.28618(15)	0	0.25	1	0.89(4)	
O (1)	36 <i>f</i>	0.1724(2)	-0.0266(3)	0.19212(10)	1	0.96(4)	
O(2)	36 <i>f</i>	0.3063(3)	0.8304(2)	0.25527(10)	1	0.96(4)	
Site	<i>U</i> ₁₁ / Å	U_{22} / Å	U ₃₃ / Å	U_{12} / Å	U_{13} / Å	U_{23} / Å	
Na	0.0366(16)	0.0366(16)	0.005(2)	0.0183(8)	0	0	

	$Na_2CrTi(PO_4)_3$	$NaCrTi(PO_4)_3$	Difference
Unit cell volume / Å ³	1378.71	1333.13	-45.58 (-3.306 %)
Average <i>TM</i> -O bond length / Å	1.949(2)	1.909(2)	-0.040
Quadratic elongation of [<i>TM</i> O ₆] octahedron	1.0031	1.0035	0.0004
Bond angle variance of [<i>TM</i> O ₆] octahedron / deg. ²	10.8464	11.6036	0.7572
Effective coordination number of [<i>TM</i> O ₆] octahedron	5.9921	5.9423	-0.0498

Table S3 Change of structural parameters obtained from Rietveld refinement. (TM = Cr or Ti)Relative difference of unit cell volume was defined as $\Delta V = (V_{2nd charged} - V_{pristine})/V_{pristine}$.

Table S4. Electronic structure parameters used for the CTM calculations in Figure 5. 10Dq, Δ , U and Q are crystal field splitting, charge-transfer energy, intra-atomic coulombic interaction for d electron and core-hole potential, respectively. Spin-orbital coupling was reduced to 97 % for only Cr^{4+} .

	Symmetry	10 <i>Dq</i> / eV	⊿ / eV	U/eV	<i>Q</i> / eV
Cr ³⁺	O_h	1.0	1.0	5.0	6.0
Cr ⁴⁺	O_h	1.6	0.5	5.0	6.0

Table S5. Electronic structure parameters used for the CTM calculations in Figure S7. 10Dq, Δ , U and Q are crystal field splitting, charge-transfer energy, intra-atomic coulombic interaction for d electron and core-hole potential, respectively. Spin-orbital coupling was reduced to 94 %.

	Symmetry	10 <i>Dq</i> / eV	⊿ / eV	U / eV	<i>Q</i> / eV
Ti ⁴⁺	O_h	1.9	3.0	5.0	6.0