Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

Switchable regioselection of C-H thiolation of indoles using different TMS counterions

Yuan-Zhao Ji,^a Hui-Jing Li, *a,b Jin-Yu Zhang,^a and Yan-Chao Wu *a,b

^a School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P.R. China
^b Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P.R. China.
E-mails: lihuijing@iccas.ac.cn, ycwu@iccas.ac.cn

Table of Contents

1. General Information ••••••• S3
2. General Procedures for the Preparation of Sodium Arylsulfinates 2
3. General Procedures for the Preparation of <i>N</i> -substituted Indoles 1 •••••••••••••••••••••••••••••••••••
4. Optimization of the Reaction Conditions S9
5. General Procedures for the Preparation of C2-Thioindoles 3 •••••••••••••••••••••••••••••••••••
6. General Procedures for the Preparation of C3-Thioindoles 4 •••••••••••••••••••••••••••••••••••
7. Synthesis of C3-Thioindole 4y S36
8. Gram-Scale Experimental Procedure for Thioindoles 3a and 4a
9. Mechanistic Control Experiments S41
10. NMR Spectra S48
11. References ••••••••••••••••••••••••••••••••••••

1. General Information

Unless otherwise noted, all reactants or reagents including solvents were obtained from commercial suppliers and used without further purification. TLC plates were visualized by exposure to ultra violet light (UV). High-resolution mass spectra (HRMS) were recorded by using an Electrothemal LTQ-Orbitrap mass spectrometer. Melting points were measured by using a Gongyi X-5 microscopy digital melting point apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were obtained by using a Bruker Avance III 400 MHz NMR or a JNM-ECZ400S/L1 400 MHz NMR spectrometer. Chemical shifts for protons are reported in parts per million (δ scale) and are referenced to residual protium in the NMR solvents [CDCl₃: δ 7.26]. Chemical shifts for carbon resonances are reported in parts per million (δ scale) and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, and coupling constant in Hertz (Hz).

2. General Procedures for the Preparation of Sodium Arylsulfinates 2¹

Sodium sulfite (20 mmol, 2 equiv), sodium bicarbonate (20 mmol, 2 equiv) and the corresponding R-sulfonyl chloride (10 mmol, 1 equiv) were dissolved in distilled water (10 mL). The reaction mixture was stirred for 4 h at 80 °C. After cooling to rt, water was removed by rotary evaporator. Then the remaining solid was extracted and recrystallized by ethanol to get a white solid - the required compound.

3. General Procedures for the Preparation of N-substituted Indoles 1^{2,3}

General procedure for the preparation of *N***-methyl indoles. ² To a stirred solution of the corresponding indole (2 mmol, 1 equiv) in ether (2 mL) was slowly added potassium** *tert***-butanolate (4 mmol, 2 equiv) and iodomethane (4 mmol, 2 equiv) at 0 °C, after 24 hours the reaction mixture was poured into saturated aqueous NaHCO₃ solution (5 mL) and extracted with ether (5 mL) three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (100–200 mesh, elution 3% ethyl acetate in petroleum ether). The product was identified by NMR and HRMS spectra.**

4-Bromo-1-methyl-1*H*-indole (1b)

Cyan oil, 303.7 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.35 (d, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 8.1 Hz, 1H), 7.15–7.13 (m, 2H), 6.60 (s, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.8, 129.2, 128.9, 122.2, 122.0, 114.6, 108.3, 101.1, 33.0; HRMS (ESI) m/z: Calcd for C₉H₉BrN [M+H]⁺: 209.9913. Found: 209.9915.

5-Bromo-1-methyl-1*H*-indole (1c)

Cyan oil, 332.8 mg, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, *J* = 1.7 Hz, 1H), 7.33 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 7.06 (d, *J* = 3.1 Hz, 1H), 6.45 (d, *J* = 3.0 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 135.2, 130.0, 129.9, 124.1, 123.1, 112.5, 110.5, 100.4, 32.8; HRMS (ESI) m/z: Calcd for C₉H₉BrN [M+H]⁺:209.9913. Found: 209.9917.

5-Methoxy-1-methyl-1*H*-indole (1d)

Pale yellow solid; 192.0 mg, 59.6% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.23 (d, J = 8.8 Hz, 1H), 7.13 (d, J = 2.4 Hz, 1H), 7.04 (d, J = 3.0 Hz, 1H), 6.92 (dd, J = 8.8, 2.4 Hz, 1H), 6.43 (d, J = 3.0 Hz, 1H), 3.88 (s, 3H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.8, 132.0, 129.2, 128.6, 111.7, 109.8, 102.3, 100.2, 55.7, 32.8; HRMS (ESI) m/z: Calcd for C₁₀H₁₂NO [M+H]⁺: 162.0913. Found: 162.0911.

6-Chloro-1-methyl-1*H*-indole (1e)

Pale yellow oil, 174.9 mg, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.54 (d, J = 8.4 Hz, 1H), 7.33 (s, 1H), 7.09 (dd, J = 8.4, 1.7 Hz, 1H), 7.04 (d, J = 3.1 Hz, 1H), 6.47 (dd, J = 3.1, 0.6 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.9, 129.4, 127.3, 126.8, 121.5, 119.8, 109.1, 101.0, 32.6; HRMS (ESI) m/z: Calcd for C₉H₉CIN [M+H]⁺: 166.0418. Found: 166.0426.

6-Fluoro-1-methyl-1*H*-indole (1f)

Yellow solid; 134.1 mg, 45% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.56–7.52 (m, 1H), 7.04–6.99 (m, 2H), 6.92–6.86 (m, 1H), 6.48 (t, J = 2.5 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.7 (d, $J_{C-F} = 237.1$ Hz), 136.6 (d, $J_{C-F} = 12.0$ Hz), 129.1 (d, $J_{C-F} = 3.2$ Hz), 124.8, 121.4 (d, $J_{C-F} = 10.1$ Hz), 107.9 (d, $J_{C-F} = 24.5$ Hz), 100.9, 95.5 (d, $J_{C-F} = 26.2$ Hz), 32.6; HRMS (ESI) m/z: Calcd for C₉H₉FN [M+H]⁺: 150.0714. Found: 150.0721.

7-Methoxy-1-methyl-1*H*-indole (1g)

Cyan solid; 289.8 mg, 90% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.25 (d, *J* = 8.4 Hz, 1H), 7.02 (t, *J* = 7.9 Hz, 1H), 6.95 (d, *J* = 3.1 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 1H), 6.46 (d, *J* = 3.0 Hz, 1H), 4.09 (s, 3H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.8, 130.8, 129.7, 119.7, 113.7, 102.1, 100.9, 55.3, 36.5; HRMS (ESI) m/z: Calcd for C₁₀H₁₂NO [M+H]⁺: 162.0913. Found: 162.0917.

1,2-Dimethyl-1*H*-indole (1h)

Red solid; 173.4 mg, 59.8% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.28 (s, 1H), 3.68 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.2, 136.6, 127.8, 120.3, 119.5, 119.1, 108.6, 99.4, 29.1, 12.6; HRMS (ESI) m/z: Calcd for C₁₀H₁₂N [M+H]⁺: 146.0964. Found: 146.0972.

General procedure for the preparation of *N***-benzyl indole.**² To a stirred solution of 1*H*-indole (2 mmol) in THF (2 mL) was slowly added potassium hydroxide (8 mmol) and benzyl bromide (2 mmol) at 0 °C. After 24 hours, the mixture was poured into saturated aqueous NaHCO₃ solution (5 mL) and

extracted with ether (5 mL) three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (100–200 mesh, elution 5% ethyl acetate in petroleum ether). The product was identified by NMR and HRMS spectra.

1-Benzyl-1*H*-indole (1i)

Cyan solid; 393.2 mg, 95% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, *J* = 7.8 Hz, 1H), 7.34–7.28 (m, 4H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.16–7.13 (m, 4H), 6.59 (d, *J* = 3.0 Hz, 1H), 5.35 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.4, 136.2, 128.6, 128.2, 127.5, 126.7, 121.6, 120.9, 119.4, 109.6, 101.6, 49.9; HRMS (ESI) m/z: Calcd for C₁₅H₁₄N [M+H]⁺: 208.1121. Found: 208.1128.

General procedure for the preparation of 1-(1*H***-Indol-1-yl)ethan-1one.³ To a flask charged with indole (2 mmol), sodium hydroxide (5 mmol), and tetrabutylammonium hydrogensulfate (0.04 mmol) was added DCM (5 mL). A solution of acetyl chloride (3 mmol) in DCM (3 mL) was then added dropwise. The reaction mixture was stirred at room temperature for 16 h, filtered through a plug of silica and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (100–200 mesh, elution 6% ethyl acetate in petroleum ether). The product was identified by NMR and HRMS spectra.**

1-(1*H*-Indol-1-yl)ethan-1-one (1j)

Colorless oil; 270.3 mg, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.48 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 3.4 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.31 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 3.7 Hz, 1H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.5, 135.4, 130.3, 125.1, 125.0, 123.5, 120.7, 116.4, 109.0, 23.8; HRMS (ESI) m/z: Calcd for C₁₀H₁₀NO [M+H]⁺: 160.0557. Found: 160.0563.

4. Optimization of the Reaction Conditions

NaO _S O promotor							
	(Y equiv)						
	N rt, solvent, 12h	N	N N				
	1a 2a	3a	4a				
Foto	Promotor (Voquiv)	Solvent	Yield (%) ^b				
Linuy		Solvent	3a	4a			
1 ^c	TMSOTf (4.0)	CH_2CI_2	23	N.D.			
2 ^d	TMSOTf (4.0)	CH_2CI_2	N.D.	N.D.			
3 ^e	TMSOTf (4.0)	CH_2CI_2	70	N.D.			
4 ^f	TMSOTf (4.0)	CH ₂ CI ₂	80 (78 ^h)	N.D.			
5 ^g	TMSOTf (4.0)	CH_2CI_2	80	N.D.			
6 ^f	TfOH (4.0)	CH_2CI_2	60	N.D.			
7 ^f	TMSCI (4.0)	CH_2CI_2	N.D.	83			
8 ^f	TMSCF ₃ (4.0)	CH_2CI_2	N.R.	N.R.			
9 ^f	BF ₃ •Et ₂ O (4.0)	CH_2CI_2	N.D.	N.D.			
10 ^f	<i>p</i> -TsOH (4.0)	CH_2CI_2	N.D.	28			
11 ^f	TMSOTf (4.0)	(CICH ₂) ₂	76	N.D.			
12 ^f	TMSOTf (4.0)	MeNO ₂	67	N.D.			
13 ^f	TMSOTf (4.0)	MeCN	50	N.D.			
14 ^f	TMSOTf (4.0)	THF	N.D.	30			
15 ^f	TMSOTf (4.0)	1,4-dioxane	N.D.	30			
16 ^f	TMSOTf (1.0)	CH_2CI_2	N.D.	N.D.			
17 ^ŕ	TMSOTf (2.0)	CH_2CI_2	N.D.	N.D.			
18 ^f	TMSOTf (2.5)	CH_2CI_2	26	N.D.			
19 ^f	TMSOTf (3.0)	CH_2CI_2	55	N.D.			
20 ^f	TMSOTf (3.5)	CH_2CI_2	64	N.D.			
21 ^f	21 ^f TMSOTf (4.5)		80	N.D.			
22 ^{f,h,i}	TMSOTf (4.0)	CH_2CI_2	68	N.D.			

Table S1. Optimization of the reaction conditions of 3a^a

^a General conditions: 1a (0.2-0.6 mmol), 2a (0.2 mmol), and promoter (0.2-0.8 mmol) in solvent (1.0 mL) at 25 °C for 12 h. ^b The yield was determined by ¹H NMR spectroscopy using 0.2 mmol of CH₂Br₂ as a standard. ^c 0.3 mmol of **1a**. ^d 0.2 mmol of **1a**. ^e 0.4 mmol of 1a. ^f 0.5 mmol of 1a. ^g 0.6 mmol of 1a. ^h Isolated yield. ⁱ Reaction was carried out at 10.7 g scale of 2a (60.0 mmol). N.D. = no detection. N.R. = no reaction.

The reaction of 1-methyl-1*H*-indole (1a) with sodium 4-methylbenzenesulfinate (2a) was used as a probe for evaluating the reaction conditions, and the representative results are summarized in Table S1. Reaction of 1-methyl-1*H*-indole (**1a**) with sodium 4-methylbenzenesulfinate (**2a**) in the presence of TMSOTf (4.0 equiv) at room temperature (25 °C) for 12 h afforded 1-methyl-2-(p-tolylthio)-1H-indole (3a) in 23% yield (entry 1). The yield of **3a** was further increased up to 80% when the loading of indole **1a** was increased from 1.0 equivalent to 2.5 equivalents (entries 1-4). No further increase was observed when the loading of indole 2a exceeded 2.5 equivalents (entries 4-5). A series of other promoters such as TfOH, TMSCI, TMSCF₃, BF₃•Et₂O and *p*-TsOH were further investigated for this reaction, but no better results were obtained in comparison to that with the use of TMSOTf as the promoter (entries 4 and 6–10). To our surprised, another product C3-thioindole 4a was also gained in 83% and 28% yields in the presence of TMSCI and p-TsOH, respectively. (entries 7 and 10). The solvent played an important role in this reaction. With the use of (CICH₂)₂, MeNO₂, MeCN, THF and 1,4-dioxane in comparison to CH₂Cl₂, lower yields of 3a were observed (entries 4 and 11–15). Further parameters optimization of 3a identified the most effective TMSOTf loading as 4.0 equivalents (entries 4 and 16-21). Furthermore, scaling up sodium 4-methylbenzenesulfinate (2a) to 10.7 g (60.0 mmol) the reaction provided the yield of **3a** at an excellent level (entry 22).

		+ SONa rt, solver	oter uiv.) nt, 12h	
	1a (<i>X</i> equiv.)	2a	\` 4a	
Entry	X	Promoter (Yequiv)	Solvent	4a Yield (%) ^b
1	2.5	TMSCI (Y = 4.0)	CH ₂ Cl ₂	83 (80°)
2	2.5	$Me_2SiHCI (Y = 4.0)$	CH_2CI_2	75
3	2.5	$Et_3SiH(Y = 4.0)$	CH_2CI_2	N.R.
4	2.5	$Ph_{3}SiH(Y = 4.0)$	CH_2CI_2	N.R.
5	2.5	$TMSCF_3 (Y = 4.0)$	CH_2CI_2	N.R.
6	2.5	TMSCI (Y = 4.0)	(CICH ₂) ₂	62
7	2.5	TMSCI (Y = 4.0)	MeNO ₂	73
8	2.5	TMSCI (Y = 4.0)	MeCN	71
9	2.5	TMSCI (Y = 4.0)	THF	51
10	2.5	TMSCI (Y = 4.0)	CHCl ₃	62
11	2.5	TMSCI (Y = 4.0)	1,4-dioxane	15
12	2.5	TMSCI (Y = 4.0)	toluene	29
13	2.5	TMSCI (Y = 1.0)	CH_2CI_2	N.D.
14	2.5	TMSCI (Y = 2.0)	CH_2CI_2	63
15	2.5	TMSCI (Y = 2.5)	CH_2CI_2	73
16	2.5	TMSCI (Y = 3.0)	CH_2CI_2	76
17	2.5	TMSCI (Y = 3.5)	CH_2CI_2	78
18	2.5	TMSCI (Y = 4.5)	CH_2CI_2	83
19	1.0	TMSCI (Y = 4.0)	CH_2CI_2	42
20	1.2	TMSCI (Y = 4.0)	CH_2CI_2	45
21	1.5	TMSCI (Y = 4.0)	CH_2CI_2	58
22	2.0	TMSCI (Y = 4.0)	CH_2CI_2	76
23	3.0	TMSCI (Y = 4.0)	CH_2CI_2	83
24 ^{c,d}	2.5	TMSCI ($Y = 4.0$)	CH ₂ Cl ₂	71

Table S2. Optimization of the reaction conditions of 4a^a

^a General conditions: **1a** (0.2–0.6 mmol), **2a** (0.2 mmol), and promoter (0.2–2 mmol) in solvent (1.0 mL) at 25 °C for 12 h. ^b The yield of **4a** was determined by ¹H NMR spectroscopy using 0.2 mmol of CH_2Br_2 as a standard. ^c Isolated yield. ^d Reaction was carried out at 10.7 g scale of **2a** (60.0 mmol). N.R. = no reaction. N.D. = no detection.

The reaction of 1-methyl-1*H*-indole (**1a**) with sodium 4-methylbenzenesulfinate (**2a**) was used as a probe for evaluating the reaction conditions, and the representative results are summarized in Table S2. Reaction of 1-methyl-1*H*-indole (**1a**) with sodium 4-methylbenzenesulfinate (**2a**) in the presence of TMSCI (4.0 equiv) at room temperature (25 °C) for 12 h

afforded 1-methyl-3-(*p*-tolylthio)-1*H*-indole (**4a**) in 83% yield (entry 1). A series of other promoters such as Me₂SiHCl, Et₃SiH, Ph₃SiH and TMSCF₃ were further investigated for this reaction, but no better results were obtained in comparison to that with the use of TMSCl as the promoter (entries 1–5). The solvent played an important role in this reaction. With the use of (CICH₂)₂, MeNO₂, MeCN, THF, CHCl₃, 1,4-dioxane and toluene in comparison to CH₂Cl₂, lower yields of **4a** were observed (entries 1 and 6–12). Further parameters optimization of **4a** identified the most effective TMSCl loading as 4.0 equivalents (entries 1 and 13–18). The yield of **4a** was further increased up to 83% when the loading of indole **1a** was increased from 1.0 equivalent to 2.5 equivalents (entries 19–22). No further increase was observed when the loading of indole **2a** exceeded 2.5 equivalents (entries 22–23). Furthermore, scaling up sodium 4-methylbenzenesulfinate (**2a**) to 10.7 g (60.0 mmol) the reaction provided the yield of **4a** at an excellent level (entry 24)

5. General Procedures for the Preparation of C2-Thioindoles 3

The mixture of a sodium arylsulfinate (0.2 mmol, 1 equiv), an indole (0.5 mmol, 2.5 equiv) and TMSOTf (0.8 mmol, 4 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the desired C2-thioindoles **3.** In addition, disubstituted products **5** were also gained for some examples.

1-Methyl-2-(p-tolylthio)-1H-indole (3a)

White solid, m.p. = 50–52 °C; 39.5 mg, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.72 (d, *J* =7.9 Hz, 1H), 7.38–7.33 (m, 2H), 7.24–7.20 (m, 1H), 7.10 (d, *J* =8.3 Hz, 2H), 7.07 (d, *J* =8.5 Hz, 2H), 7.00 (s, 1H), 3.74 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.5, 135.7, 133.2, 129.8, 127.8, 127.2, 127.0, 122.7, 120.7, 119.8, 111.2, 109.7, 29.8, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₆NS [M+H]⁺: 254.0998. Found: 254.0994. 4-Bromo-1-methyl-2-(p-tolylthio)-1H-indole (3b)

Pale yellow oil, 29.8 mg, 45% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (d, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.11 (t, *J* = 7.9 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.94 (s, 1H), 3.67 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.8, 136.2, 132.3, 129.9, 129.3, 127.9, 127.5, 123.4, 122.7, 114.6, 111.0, 108.8, 30.3, 20.9; FTIR (film): 2917, 2850, 1492, 1447, 1327, 1194, 1085, 802, 755 cm⁻¹; HRMS (ESI) m/z: Calcd for C₁₆H₁₅BrNS [M+H]⁺: 332.0103. Found: 332.0106.

5-Bromo-1-methyl-2-(p-tolylthio)-1H-indole (3c)

Pale yellow oil, 44.4 mg, 67% yield; ¹H NMR (400 MHz, CDCl₃) δ: 7.77 (s, 1H), 7.35 (d, *J* =8.2 Hz, 1H), 7.17 (d, *J* =8.7 Hz, 1H), 7.07 (d, *J* =7.9 Hz, 2H), 7.02 (d, *J* =8.0 Hz, 2H), 6.85 (s, 1H), 3.67 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 137.1, 136.1, 132.4, 129.9, 128.6, 127.4, 126.2, 125.4, 123.0, 113.0, 111.1, 110.2, 30.0, 20.9; HRMS (ESI) m/z: Calcd for C₁₆H₁₅BrNS [M+H]⁺: 332.0103. Found: 332.0109. 5-Methoxy-1-methyl-2-(p-tolylthio)-1H-indole (3d)

White solid, m.p. = 78–80 °C; 30.0 mg, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.21 (d, *J* =8.9 Hz, 1H), 7.09 (d, *J* =2.3 Hz, 1H), 7.04 (d, *J* =8.2 Hz, 2H), 7.00– 6.94 (m, 3H), 6.84 (s, 1H), 3.87 (s, 3H), 3.66 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.2, 135.7, 134.0, 133.3, 129.8, 127.9, 127.4, 126.9, 113.5, 110.7, 110.5, 101.8, 55.8, 29.9, 20.8; HRMS (ESI) m/z: Calcd for C₁₇H₁₈NOS [M+H]⁺: 284.1104. Found: 284.1112.

6-Chloro-1-methyl-2-(p-tolylthio)-1H-indole (3e)

White solid, m.p. = 43–45 °C; 42.5 mg, 74% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.54 (d, *J* =8.4 Hz, 1H), 7.32 (s, 1H), 7.13 (dd, *J* =8.4, 1.0 Hz, 1H), 7.07 (d, *J* =8.0 Hz, 2H), 7.01 (d, *J* =8.1 Hz, 2H), 6.90 (s, 1H), 3.65 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.8, 136.0, 132.6, 129.9, 129.0, 128.8, 127.2, 125.6, 121.5, 120.5, 111.2, 109.7, 29.9, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₅CINS [M+H]⁺: 288.0608. Found: 288.0613.

6-Fluoro-1-methyl-2-(p-tolylthio)-1H-indole (3f)

Pale yellow oil, 39.6 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.56 (dd, *J* =8.6, 5.5 Hz, 1H), 7.06 (d, *J* =8.1 Hz, 2H), 7.02–6.98 (m, 3H), 6.95–6.90 (m, 2H), 3.64 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 160.4 (d, *J*_{C-F} = 239.8 Hz), 138.7 (d, *J*_{C-F} = 12.2 Hz), 135.9, 133.0, 129.9, 128.1 (d, *J*_{C-F} = 3.6 Hz), 127.0, 123.6, 121.7 (d, *J*_{C-F} = 10.1 Hz), 111.5, 108.8 (d, *J*_{C-F} = 24.8 Hz), 96.1 (d, *J*_{C-F} = 26.2 Hz), 30.0, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₅FNS [M+H]⁺: 272.0904. Found: 272.0909.

7-Methoxy-1-methyl-2-(p-tolylthio)-1H-indole (3g)

Pale yellow oil, 14.1 mg, 25% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.22 (d, *J* = 8.0 Hz, 1H), 7.05–6.97 (m, 5H), 6.88 (s, 1H), 6.67 (d, *J* = 7.8 Hz, 1H), 3.99 (s, 3H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.4, 135.6, 133.4, 129.8, 129.1, 128.0, 126.9, 126.0, 120.0, 113.5, 111.7, 103.3, 55.3, 33.1, 20.9; HRMS (ESI) m/z: Calcd for C₁₇H₁₈NOS [M+H]⁺: 284.1104. Found: 284.1108.

1-Benzyl-2-(p-tolylthio)-1H-indole (3h)

Yellow oil; 49.4 mg, 75% yield; ¹H NMR (400 MHz, CDCl₃) δ: 7.68 (d, *J*=7.9 Hz, 1H), 7.24–7.13 (m, 6H), 7.04–6.94 (m, 7H), 5.40 (s, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 138.2, 137.6, 136.0, 132.8, 129.7, 128.4, 127.5, 127.0,

126.3, 122.9, 120.7, 120.0, 111.9, 110.5, 47.0, 20.8; HRMS (ESI) m/z: Calcd for C₂₂H₂₀NS [M+H]⁺: 330.1311. Found: 330.1338.

1-Methyl-2-(phenylthio)-1*H*-indole (3j)

Yellow solid, m.p. = 76.0–78.0 °C; 20.1 mg, 42% yield; ¹H NMR (400 MHz, CDCl₃) δ: 7.70 (d, *J* =7.9 Hz, 1H), 7.39–7.32 (m, 2H), 7.28–7.24 (m, 2H), 7.22–7.15 (m, 2H), 7.10 (d, *J* =7.6 Hz, 2H), 7.00 (s, 1H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 138.6, 137.0, 129.0, 127.2, 127.0, 126.5, 125.7, 122.9, 120.8, 119.9, 111.7, 109.8, 29.8; HRMS (ESI) m/z: Calcd for C₁₅H₁₄NS [M+H]⁺: 240.0841. Found: 240.0849.

2-((4-Fluorophenyl)thio)-1-methyl-1*H*-indole (3k)

Pale yellow oil, 27.2 mg, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, *J* =7.9 Hz, 1H), 7.35–7.30 (m, 2H), 7.20–7.17 (m, 1H), 7.12–7.08 (m, 2H), 6.98–6.94 (m, 3H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.4 (d, *J*_{C-F} = 245.9 Hz), 138.6, 131.8 (d, *J*_{C-F} = 2.9 Hz), 128.8 (d, *J*_{C-F} = 8.0 Hz), 127.4, 127.1, 123.0, 120.8, 119.9, 116.2 (d, *J*_{C-F} = 22.2 Hz), 111.5, 109.8, 29.8; HRMS (ESI) m/z: Calcd for C₁₅H₁₃FNS [M+H]⁺: 258.0747. Found: 258.0752.

2-((4-Chlorophenyl)thio)-1-methyl-1H-indole (31)

White solid, m.p. = 58–60 °C; 25.1 mg, 46% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, *J* =7.5 Hz, 1H), 7.36–7.30 (m, 2H), 7.21–7.17 (m, 3H), 7.01–6.98 (m, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.7, 135.6, 131.6, 129.1, 127.7, 127.1, 126.3, 123.1, 120.9, 120.0, 112.0, 109.9, 29.8; HRMS (ESI) m/z: Calcd for C₁₅H₁₃CINS [M+H]⁺: 274.0452. Found: 274.0459.

2-((4-Bromophenyl)thio)-1-methyl-1*H*-indole (3m)

White solid, m.p. = 57–59 °C; 23.4 mg, 37% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, *J* = 7.9 Hz, 1H), 7.36–7.30 (m, 4H), 7.20–7.16 (m, 1H), 6.97 (s, 1H), 6.92 (d, *J* = 8.5 Hz, 2H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.7, 136.4, 132.1, 127.9, 127.1, 126.1, 123.1, 120.9, 120.0, 119.4, 112.0, 109.9, 29.8; HRMS (ESI) m/z: Calcd for C₁₅H₁₃BrNS [M+H]⁺: 317.9947. Found: 317.9951.

2,3-Bis((4-bromophenyl)thio)-1-methyl-1H-indole (5m)

White solid, m.p. = 115–117 °C; 14.0 mg, 14% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* = 8.0 Hz, 1H), 7.43–7.36 (m, 2H), 7.30–7.22 (m, 5H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.4, 137.5, 134.8, 133.6, 132.2, 131.6, 128.9, 128.8, 128.0, 124.3, 121.4, 120.1, 118.7, 110.7, 110.3, 31.1; HRMS (ESI) m/z: Calcd for C₂₁H₁₆Br₂NS₂ [M+H]⁺:503.9085. Found: 503.9089.

1-Methyl-2-((4-(trifluoromethyl)phenyl)thio)-1*H*-indole (3n)

White solid, m.p. = 66–68 °C; 17.2 mg, 28% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (d, *J* = 7.9 Hz, 1H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.38–7.32 (m, 2H), 7.21– 7.17 (m, 1H), 7.09 (d, *J* = 8.3 Hz, 2H), 7.01 (s, 1H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.7, 138.8, 127.8 (q, *J*_{C-F} = 32.6 Hz), 127.1, 125.9 (q, *J*_{C-F} = 3.7 Hz), 125.7, 124.9, 124.0 (q, *J*_{C-F} = 271.9 Hz), 123.4, 121.0, 120.2, 112.6, 110.0, 29.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₃F₃NS [M+H]⁺: 308.0715. Found: 308.0722.

1-Methyl-2,3-bis((4-(trifluoromethyl)phenyl)thio)-1*H*-indole (5n)

White solid, m.p. = 107–109 °C; 21.3 mg, 22% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.3 Hz, 1H), 7.45–7.40 (m, 3H), 7.35 (d, *J* = 8.3 Hz, 2H), 7.28–7.25 (m, 1H), 7.11 (d, *J* = 8.2 Hz, 2H), 7.07 (d, *J*

= 8.3 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.54, 143.53, 140.86, 140.85, 138.6, 132.8, 128.9, 128.4 (q, $J_{C-F} = 32.7$ Hz), 127.2 (q, $J_{C-F} = 31.8$ Hz), 126.5, 126.1 (q, $J_{C-F} = 3.8$ Hz), 125.8, 125.5 (q, $J_{C-F} = 3.6$ Hz), 124.6, 124.1 (q, $J_{C-F} = 271.8$ Hz), 123.8 (q, $J_{C-F} = 271.7$ Hz), 121.7, 120.2, 110.5, 110.2, 31.2; HRMS (ESI) m/z: Calcd for C₂₃H₁₆F₆NS₂ [M+H]⁺:484.0623. Found: 484.0628.

2-((4-(tert-Butyl)phenyl)thio)-1-methyl-1H-indole (30)

Colorless oil, 51.3 mg, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, *J* = 7.9 Hz, 1H), 7.37–7.32 (m, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.97 (s, 1H), 3.75 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 149.0, 138.6, 133.3, 127.7, 127.2, 126.6, 126.1, 122.7, 120.7, 119.8, 111.3, 109.7, 34.3, 31.2, 29.9; HRMS (ESI) m/z: Calcd for C₁₉H₂₂NS [M+H]⁺: 296.1467. Found:296.1469.

2-((4-Methoxyphenyl)thio)-1-methyl-1*H*-indole (3p)

White solid, m.p. = 50–52 °C; 50.0 mg, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ :7.64 (d, *J* = 7.9 Hz, 1H), 7.32–7.25 (m, 2H), 7.17–7.12 (m, 3H), 6.89 (s, 1H), 6.83–6.79 (m, 2H), 3.77 (s, 3H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.4, 138.5, 129.6, 129.1, 127.2, 126.8, 122.6, 120.6, 119.8, 114.8, 110.4,

109.6, 55.3, 29.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₆NOS [M+H]⁺: 270.0947. Found: 270.0953.

2-((3-Bromophenyl)thio)-1-methyl-1H-indole (3q)

Pale yellow oil, 16.5 mg, 26% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, J = 8.0 Hz, 1H), 7.37–7.30 (m, 2H), 7.28–7.24 (m, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.08 (t, J = 7.9 Hz, 1H), 6.98 (s, 1H), 6.94 (d, J = 7.6 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 139.6, 138.8, 130.4, 128.9, 128.8, 127.1, 125.6, 124.8, 123.2, 123.1, 121.0, 120.0, 112.3, 109.9, 29.8; HRMS (ESI) m/z: Calcd for C₁₅H₁₃BrNS [M+H]⁺: 317.9947. Found: 317.9951.

2,3-Bis((3-bromophenyl)thio)-1-methyl-1*H*-indole (5q)

Pale yellow oil, 25.2 mg, 25% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, J = 7.9 Hz, 1H), 7.45–7.38 (m, 2H), 7.24–7.15 (m, 5H), 7.04 (t, J = 7.9 Hz, 1H), 6.99 (s, 1H), 6.98 (s, 1H), 6.93 (d, J = 7.8 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 140.7, 138.5, 137.8, 133.4, 130.4, 129.9, 129.7, 129.4, 129.0, 128.8, 128.1, 125.7, 124.9, 124.4, 123.1, 122.7, 121.4, 120.2, 110.4, 110.4, 31.2; HRMS (ESI) m/z: Calcd for C₂₁H₁₆Br₂NS₂ [M+H]⁺:503.9085. Found: 503.9091.

2,3-Bis((2-chlorophenyl)thio)-1-methyl-1H-indole (5r)

White solid, m.p. = 137–139 °C; 19.9 mg, 24% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.42–7.38 (m, 1H), 7.32 (dd, *J* =7.9, 1.2 Hz, 1H), 7.29 (dd, *J* =7.9, 1.2 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.04 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.00–6.94 (m, 2H), 6.90 (dt, *J* = 7.7, 1.3 Hz, 1H), 6.61 (dd, *J* =7.9, 1.5 Hz, 1H), 6.55 (dd, *J* =7.8, 1.5 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.8, 137.5, 135.0, 133.4, 131.2, 130.5, 129.7, 129.3, 129.0, 127.6, 127.3, 126.9, 126.7, 126.5, 125.5, 124.3, 121.4, 120.3, 110.4, 110.0, 31.1; HRMS (ESI) m/z: Calcd for C₂₁H₁₆Cl₂NS₂ [M+H]⁺:416.0096. Found: 416.0091.

2-(MesityIthio)-1-methyI-1*H*-indole (3s)

Pale yellow oil, 6.1 mg, 11% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.39 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 7.00 (s, 2H), 5.94 (s, 1H), 3.74 (s, 3H), 2.45 (s, 6H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.7, 139.0, 137.9, 134.2, 129.5, 127.9, 126.9, 120.6, 119.4, 119.1, 108.6, 101.5, 30.0, 21.6, 21.0; HRMS (ESI) m/z: Calcd for C₁₈H₂₀NS [M+H]⁺: 282.1311. Found: 282.1316.

1-Methyl-2-(naphthalen-2-ylthio)-1H-indole (3t)

White solid, m.p. = 85–87 °C; 42.2 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.52 (s, 1H), 7.47–7.41 (m, 2H), 7.37–7.31 (m, 2H), 7.26–7.19 (m, 2H), 7.05 (s, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.7, 134.4, 133.7, 131.6, 128.8, 127.7, 127.2, 127.0, 127.0, 126.6, 125.6, 124.8, 124.6, 122.9, 120.8, 119.9, 111.8, 109.8, 29.9; HRMS (ESI) m/z: Calcd for C₁₉H₁₆NS [M+H]⁺: 290.0998. Found: 290.0994.

1-Methyl-2-(naphthalen-1-ylthio)-1*H*-indole (3u)

Pale yellow oil, 22.0 mg, 38% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.47 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.72 (t, J = 8.6 Hz, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.40–7.34 (m, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.3 Hz, 1H), 7.07 (s, 1H), 6.93 (d, J = 7.4 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.8, 134.2, 133.7, 130.7, 128.5, 127.3, 126.6, 126.3, 126.3, 126.3, 125.8, 124.6, 123.8, 122.8, 120.7, 119.9, 111.9, 109.8, 29.8; HRMS (ESI) m/z: Calcd for C₁₉H₁₆NS [M+H]⁺: 290.0998. Found: 290.1003.

1-Methyl-2-(thiophen-2-ylthio)-1H-indole (3v)

Pale yellow oil, 7.3 mg, 15% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.59 (d, J = 7.9 Hz, 1H), 7.30–7.23 (m, 3H), 7.14–7.10 (m, 2H), 6.94 (dd, J = 5.3, 3.6 Hz, 1H), 6.86 (s, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.3, 134.4, 131.2, 130.1, 128.7, 127.4, 127.0, 122.8, 120.8, 119.9, 109.7, 109.5, 30.0; HRMS (ESI) m/z: Calcd for C₁₃H₁₂NS₂ [M+H]⁺: 246.0406. Found: 246.0412.

1-Methyl-2-(methylthio)-1*H*-indole (3w)

Pale yellow oil, 11.0 mg, 31% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.59 (d, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.25 (t, *J* = 6.1 Hz, 1H), 7.14 (t, *J* = 6.6 Hz, 1H), 6.61 (s, 1H), 3.81 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.0, 134.0, 127.6, 121.6, 119.7, 119.6, 109.0, 104.6, 29.7, 19.0; HRMS (ESI) m/z: Calcd for C₁₀H₁₂NS [M+H]⁺: 178.0685. Found: 178.0691.

6. General Procedures for the Preparation of C3-Thioindoles 4

The mixture of a sodium arylsulfinates (0.2 mmol, 1 equiv), an indole (0.5 mmol, 2.5 equiv) and TMSCI (0.8 mmol, 4 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the desired **4**.

1-Methyl-3-(p-tolylthio)-1H-indole (4a)

White solid, m.p. = 116–118 °C; 40.5 mg, 80% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* =7.9 Hz, 1H), 7.39 (d, *J* =8.2 Hz, 1H), 7.33–7.29 (m, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 3.84 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.4, 135.8, 134.7, 134.4, 129.7, 129.3, 126.0, 122.4, 120.3, 119.6, 109.6, 101.0, 33.0, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₆NS [M+H]⁺: 254.0998. Found: 254.1001.

4-Bromo-1-methyl-3-(p-tolylthio)-1H-indole (4b)

Pale yellow oil, 45.0 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ: 7.35–7.31 (m, 3H), 7.11 (t, *J* =7.9 Hz, 1H), 7.04–6.99 (m, 4H), 3.80 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 138.5, 137.6, 137.2, 134.3, 129.3, 126.8, 126.0, 125.2, 123.2, 114.6, 109.1, 102.0, 33.2, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₅BrNS [M+H]⁺: 332.0103. Found: 332.0106.

5-Bromo-1-methyl-3-(p-tolylthio)-1H-indole (4c)

Yellow solid, m.p. = 99.1–101.1 °C; 45.0 mg, 68% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (d, *J* =1.4 Hz, 1H), 7.36 (dd, *J* =8.6, 1.6 Hz, 1H), 7.30 (s, 1H), 7.22 (d, *J* = 8.7 Hz, 1H), 7.03–6.98 (m, 4H), 3.80 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.1, 135.9, 135.3, 134.7, 131.5, 129.5, 126.1, 125.4, 122.1, 114.1, 111.2, 101.0, 33.2, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₅BrNS [M+H]⁺: 332.0103. Found: 332.0108.

5-Methoxy-1-methyl-3-(p-tolylthio)-1H-indole (4d)

Pale yellow oil, 44.1 mg, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (s, 1H), 7.30 (d, *J* =8.0 Hz, 1H), 7.12 (d, *J* =2.4 Hz, 1H), 7.08 (d, *J* =8.3 Hz, 2H), 7.03 (d,

J =8.3 Hz, 2H), 6.99 (dd, *J* =8.8, 2.4 Hz, 2H), 3.85 (s, 3H), 3.82 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 154.8, 136.0, 135.2, 134.3, 132.5, 130.5, 129.3, 125.8, 112.9, 110.5, 100.8, 100.1, 55.7, 33.1, 20.7; HRMS (ESI) m/z: Calcd for C₁₇H₁₈NOS [M+H]⁺: 284.1104. Found: 284.1106.

6-Chloro-1-methyl-3-(p-tolylthio)-1H-indole (4e)

Pale yellow oil, 44.8 mg, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, *J* = 8.4 Hz, 1H), 7.37 (s, 1H), 7.30 (s, 1H), 7.13 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 3.78 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.8, 135.3, 135.2, 134.7, 129.4, 128.6, 128.2, 126.2, 121.0, 120.6, 109.7, 101.9, 33.0, 20.8; HRMS (ESI) m/z: Calcd for C₁₆H₁₅CINS [M+H]⁺: 288.0608. Found: 288.0615.

6-Fluoro-1-methyl-3-(p-tolylthio)-1H-indole (4f)

White solid, m.p. = 58–60 °C; 49.9 mg, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.54 (dd, *J* =8.6, 5.3 Hz, 1H), 7.30 (s, 1H), 7.07–7.04 (m, 3H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.94 (dt, *J* = 9.5, 2.2 Hz, 1H), 3.77 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 160.2 (d, *J*_{C-F} = 239.1 Hz), 137.4 (d, *J*_{C-F} = 12.2 Hz), 135.4, 135.0 (d, *J*_{C-F} = 3.4 Hz), 134.6, 129.4, 126.1, 126.0, 120.6 (d, *J*_{C-F} = 10.2 Hz), 109.1 (d, *J*_{C-F} = 24.6 Hz), 101.6, 96.2 (d, *J*_{C-F} = 26.4 Hz), 33.0, 20.7; HRMS (ESI) m/z: Calcd for C₁₆H₁₅FNS [M+H]⁺: 272.0904. Found: 272.0908. 7-Methoxy-1-methyl-3-(p-tolylthio)-1H-indole (4g)

Pale yellow oil, 41.9 mg, 74% yield; ¹H NMR (400 MHz, CDCl₃) δ: 7.26 (d, *J* = 7.9 Hz, 1H), 7.22 (s, 1H), 7.10–7.06 (m, 3H), 7.02 (d, *J* = 8.2 Hz, 2H), 6.71 (d, *J* = 7.7 Hz, 1H), 4.11 (s, 3H), 3.98 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 147.9, 135.9, 135.7, 134.2, 132.2, 129.3, 127.0, 125.9, 120.8, 112.3, 103.0, 100.7, 55.3, 36.7, 20.7; HRMS (ESI) m/z: Calcd for C₁₇H₁₈NOS [M+H]⁺: 284.1104. Found: 284.1107.

1,2-Dimethyl-3-(p-tolylthio)-1H-indole (4h)

Yellow solid, m.p. = 118.0–120.0 °C; 51.3 mg, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, *J* =7.8 Hz, 1H), 7.35 (d, *J* =8.1 Hz, 1H), 7.25 (t, *J* =7.5 Hz, 1H), 7.15 (t, *J* =7.4 Hz, 1H), 7.00–6.95 (m, 4H), 3.76 (s, 3H), 2.53 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.6, 137.0, 136.1, 134.1, 129.7, 129.3, 125.6, 121.6, 120.3, 118.9, 108.9, 98.5, 30.2, 20.7, 10.8; HRMS (ESI) m/z: Calcd for C₁₇H₁₈NS [M+H]⁺: 268.1154. Found: 268.1159.

1-Benzyl-3-(p-tolylthio)-1H-indole (4i)

Yellow oil; 55.9 mg, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.72 (d, *J*=7.8 Hz, 1H), 7.45 (s, 1H), 7.41–7.34 (m, 4H), 7.32–7.28 (m, 1H), 7.25–7.22 (m, 3H), 7.12 (dd, *J*=8.1, 1.6 Hz, 2H), 7.05 (d, *J*=7.9 Hz, 2H), 5.38 (s, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.0, 136.6, 135.7, 134.4, 134.1, 129.9, 129.4, 128.8, 127.8, 126.9, 126.0, 122.6, 120.5, 119.8, 110.1, 101.9, 50.3, 20.8; HRMS (ESI) m/z: Calcd for C₂₂H₂₀NS [M+H]⁺: 330.1311. Found: 330.1317.

1-Methyl-3-(phenylthio)-1*H*-indole (4k)

White solid, m.p. = 84–87 °C; 43.9 mg, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.66 (d, *J* =7.9 Hz, 1H), 7.42 (d, *J* =8.2 Hz, 1H), 7.35–7.31 (m, 2H), 7.22–7.13 (m, 5H), 7.09–7.06 (m, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 139.6, 137.4, 135.0, 129.7, 128.6, 125.6, 124.6, 122.5, 120.4, 119.6, 109.6, 100.4, 33.0; HRMS (ESI) m/z: Calcd for C₁₅H₁₄NS [M+H]⁺: 240.0841. Found: 240.0844.

3-((4-Fluorophenyl)thio)-1-methyl-1H-indole (4)

White solid, m.p. = 68–70 °C; 44.2 mg, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, *J* =8.4 Hz, 1H), 7.41 (d, *J* =8.2 Hz, 1H), 7.34–7.31 (m, 2H), 7.20 (t, *J* =7.4 Hz, 1H), 7.13–7.10 (m, 2H), 6.89 (t, *J* = 8.7 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 160.8 (d, *J*_{C-F} = 243.7 Hz), 137.4, 134.8, 134.4 (d, *J*_{C-F} = 3.1 Hz), 129.5, 127.7 (d, *J*_{C-F} = 7.6 Hz), 122.5, 120.5, 119.5, 115.6 (d, *J*_{C-F} = 22.0 Hz), 109.7, 100.9, 33.0; HRMS (ESI) m/z: Calcd for C₁₅H₁₃FNS [M+H]⁺: 258.0747. Found: 258.0749.

3-((4-Chlorophenyl)thio)-1-methyl-1*H*-indole (4m)

White solid, m.p. = 128–129 °C; 47.0 mg, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.61 (d, *J* =7.9 Hz, 1H), 7.42 (d, *J* =8.2 Hz, 1H), 7.36–7.32 (m, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 8.6 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.2, 137.5, 135.0, 130.3, 129.4, 128.6, 126.9, 122.6, 120.5, 119.4, 109.7, 99.9, 33.0; HRMS (ESI) m/z: Calcd for C₁₅H₁₃CINS [M+H]⁺: 274.0452. Found: 274.0455.

3-((4-Bromophenyl)thio)-1-methyl-1*H*-indole (4n)

White solid, m.p. = 146–148 °C; 46.3 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (d, *J* = 8.3 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.36–7.32 (m, 2H), 7.28 (d, *J* = 7.2 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.9, 137.5, 135.0, 131.5, 129.4, 127.2, 122.6, 120.6, 119.5, 118.1, 109.7, 99.8, 33.1; HRMS (ESI) m/z: Calcd for C₁₅H₁₃NaNS [M+H]⁺: 317.9947. Found: 317.9949.

1-Methyl-3-((4-(trifluoromethyl)phenyl)thio)-1*H*-indole (40)

White solid, m.p. = 117–119 °C; 52.8 mg, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, *J* = 7.7 Hz, 1H), 7.44–7.32 (m, 5H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.15 (d, *J* = 7.9 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 145.1, 137.6, 135.2, 129.4, 126.6 (q, *J*_{C-F} = 32.6 Hz), 125.4 (q, *J*_{C-F} = 3.6 Hz), 125.1, 124.3 (q, *J*_{C-F} = 271.4 Hz), 122.8, 120.7, 119.4, 109.9, 98.8, 33.1; HRMS (ESI) m/z: Calcd for C₁₆H₁₃F₃NS [M+H]⁺: 308.0715. Found: 308.0718.

3-((4-(*tert*-Butyl)phenyl)thio)-1-methyl-1*H*-indole (4p)

Colorless oil, 56.0 mg, 95% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.33–7.29 (m, 2H), 7.20–7.17 (m, 3H), 7.06 (d, J = 8.3 Hz, 2H), 3.84 (s, 3H), 1.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.7, 137.4, 136.1, 134.9, 129.9, 125.6, 125.6, 122.4, 120.3, 119.7, 109.6, 101.0, 34.2, 33.0, 31.2; HRMS (ESI) m/z: Calcd for C₁₉H₂₂NS [M+H]⁺: 296.1467. Found:296.1469.

3-((4-Methoxyphenyl)thio)-1-methyl-1H-indole (4q)

White solid, m.p. = 63–65 °C; 42.0 mg, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.31–7.27 (m, 2H), 7.19– 7.13 (m, 3H), 6.75 (d, J = 7.8 Hz, 2H), 3.82 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.6, 137.4, 134.4, 129.9, 129.6, 128.3, 122.4, 120.3, 119.6, 114.4, 109.6, 102.2, 55.2, 33.0; HRMS (ESI) m/z: Calcd for C₁₆H₁₆NOS [M+H]⁺: 270.0947. Found: 270.0951.

3-((3-Bromophenyl)thio)-1-methyl-1*H*-indole (4r)

Colorless oil, 58.3 mg, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ: 7.64 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.37–7.34 (m, 2H), 7.28–7.20 (m, 3H), 7.06–7.01 (m, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 142.3, 137.5, 135.2, 129.8, 129.5, 128.0, 127.6, 124.1, 122.7, 122.6, 120.6, 119.4, 109.8, 99.3, 33.1; HRMS (ESI) m/z: Calcd for C₁₅H₁₃NaNS [M+H]⁺: 317.9947. Found: 317.9950.

3-((2-Chlorophenyl)thio)-1-methyl-1*H*-indole (4s)

White solid, m.p. = 130-132 °C; 39.9 mg, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.35–7.32 (m, 3H), 7.20 (t, J = 7.3 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.8, 137.6, 135.5, 129.8, 129.6, 129.1, 126.8, 126.2, 125.2, 122.7, 120.6, 119.6, 109.8,

98.7, 33.1; HRMS (ESI) m/z: Calcd for C₁₅H₁₃CINS [M+H]⁺: 274.0452. Found: 274.0457.

3-(MesityIthio)-1-methyl-1*H*-indole (4t)

Pale yellow oil, 47.2 mg, 84% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.57 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.22 (dt, *J* = 7.53, 0.99 Hz, 1H), 7.13–7.09 (m, 1H), 6.92 (s, 3H), 3.72 (s, 3H), 2.56 (s, 6H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.1, 137.6, 136.9, 130.5, 130.3, 129.1, 128.7, 121.9, 119.5, 119.5, 109.3, 105.7, 32.8, 22.1, 20.9; HRMS (ESI) m/z: Calcd for C₁₈H₂₀NS [M+H]⁺: 282.1311. Found: 282.1317.

1-Methyl-3-(naphthalen-2-ylthio)-1*H*-indole (4u)

White solid, m.p. = 113–115 °C; 50.3 mg, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.74 (d, *J* = 7.3 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.52 (s, 1H), 7.43–7.29 (m, 6H), 7.18 (t, *J* = 7.4 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.5, 137.1, 135.0, 133.7, 131.2, 129.7, 128.1, 127.6, 126.8, 126.2, 124.9, 124.6, 123.2, 122.5, 120.5, 119.7, 109.7, 100.4, 33.1; HRMS (ESI) m/z: Calcd for C₁₉H₁₆NS [M+H]⁺: 290.0998. Found: 290.0992.

1-Methyl-3-(naphthalen-1-ylthio)-1*H*-indole (4v)

White solid, m.p. = 149–151 °C; 50.3 mg, 87% yield; ¹H NMR (400 MHz, CDCl₃) δ : 8.51 (d, *J* = 8.3 Hz, 1H),7.86 (d, *J* = 8.1 Hz, 1H), 7.63–7.53 (m, 4H), 7.44–7.40 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 2H), 6.98 (d, *J* = 7.4 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.6, 136.6, 135.2, 133.6, 130.6, 129.7, 128.3, 126.0, 125.9, 125.6, 124.9, 123.8, 123.1, 122.5, 120.4, 119.7, 109.7, 99.6, 33.0; HRMS (ESI) m/z: Calcd for C₁₉H₁₆NS [M+H]⁺: 290.0998. Found: 290.0991.

1-Methyl-3-(thiophen-2-ylthio)-1H-indole (4w)

Pale yellow oil, 30.4 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (d, *J* = 7.7 Hz, 1H), 7.35–7.28 (m, 3H), 7.26–7.22 (m, 1H), 7.18–7.12 (m, 2H), 6.90–6.88 (m, 1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.4, 137.1, 133.6, 129.5, 129.1, 127.1, 127.1, 122.4, 120.3, 119.4, 109.6, 104.3, 32.9; HRMS (ESI) m/z: Calcd for C₁₃H₁₂NS₂ [M+H]⁺: 246.0406. Found: 246.0411.

1-Methyl-3-(methylthio)-1*H*-indole (4x)

Pale yellow oil, 18.8 mg, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.31–7.27 (m, 1H), 7.24–7.20 (m, 1H),

7.18 (s, 1H), 3.78 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.2, 132.4, 129.3, 122.1, 119.8, 119.2, 109.5, 106.0, 32.8, 20.6; HRMS (ESI) m/z: Calcd for C₁₀H₁₂NS [M+H]⁺: 178.0685. Found: 178.0689.

7. Synthesis of C3-Thioindole 4y

Generalprocedureforthepreparationof3,4,5-trimethoxybenzenesulfonylchloride(24).4To a stirred solution ofconcentrated (37%)HCI (20 mL),glacial acetic acid (4 mL) and CH₃CN (20mL)was added 2,4,5-trimethoxyaniline(5.5 g, 30 mmol, 1.0 equiv) at roomtemperature, the mixture was stirred at 50 °C for 20 min, and after cooling to0 °C, a solution of NaNO2 (2.3 g, 33 mmol, 1.1 equiv) in H2O (4 mL) was addeddropwise.After the addition, the mixture was allowed to stir for another 45 minat -10 °C to form the diazonium salt.

In a 250 mL round bottom flask containing glacial acetic acid (50 mL), SO₂ gas was bubbled through a diffusion apparatus until saturation of the solution. Then CuCl (0.74 g, 7.5 mmol, 0.25 equiv) was added to the colourless solution, which became greenish–yellow. SO₂ gas was allowed to bubble for an additional 30–45 min until the solution became blue–green showing that the CuCl was dissolved. The mixture was chilled in an ice bath at +10 °C and the diazonium salt previously formed was added dropwise in a rate to keep the temperature below 30 °C, and then stirred for 1 h at room temperature. Then water (100 mL) and ether (100 mL) were added. The aqueous phase was extracted with ether three times. The combined organic layers were washed with saturated aq. NaHCO₃, dried over MgSO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (100–200 mesh, elution 15% ethyl acetate in petroleum ether) to afford the sulfonyl chloride **24**.

3,4,5-Trimethoxybenzenesulfonyl chloride (24)

White solid, 1.6 g, 20% yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 11.89 (s, 1H), 7.86 (d, *J* = 2.6 Hz, 1H), 7.56 (s, 1H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.30 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.39 (s, 2H), 3.59 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 153.1, 135.4, 135.2, 133.9, 133.2, 130.4, 124.6, 120.3, 114.4, 112.7, 103.5, 99.8, 59.9, 55.7; HRMS (ESI) m/z: Calcd for C₉H₁₂ClO₅S [M+H]⁺: 267.0088. Found: 267.0093.

General procedure for the preparation of sodium 3,4,5-trimethoxybenzenesulfinate (2b). ¹ Sodium sulfite (0.96 g, 8 mmol, 2 equiv), sodium bicarbonate (0.68 g, 8 mmol, 2 equiv) and the 3,4,5-trimethoxybenzenesulfonyl chloride (1.07 g, 4 mmol, 1 equiv) were dissolved in distilled water (5 mL). The reaction mixture was stirred for 4 h at 80 °C. After cooling to rt, water was removed by rotary evaporator. Then the remaining solid was extracted and recrystallized by ethanol to get the compound **2b**.

Sodium 3,4,5-trimethoxybenzenesulfinate (2b)

White solid, 0.64 g, 63% yield; ¹H NMR (400 MHz, D₂O) δ: 6.89 (s, 2H), 3.82 (s, 6H), 3.70 (s, 3H); ¹³C NMR (100 MHz, D₂O) δ: 152.6, 150.1, 137.9, 100.8, 60.8, 56.1.

The mixture of sodium 3,4,5-trimethoxybenzenesulfinate (127 mg, 0.5 mmol, 1 equiv), 5-bromo-1*H*-indole (248 mg, 1.25 mmol, 2.5 equiv) and TMSCI (254 μ L, 2.0 mmol, 4 equiv) in CH₂Cl₂ (2.0 mL) was stirred at 25 °C for 12 h, then water (10 mL) and dichloromethane (20 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 20 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 10% \rightarrow 25% ethyl acetate in petroleum ether) to afford the desired **4y**.

5-Bromo-3-((3,4,5-trimethoxyphenyl)thio)-1H-indole (4y)

White solid, m.p. = 153-155 °C; 62.8 mg, 32% yield; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 11.89 (s, 1H), 7.86 (d, *J* = 2.6 Hz, 1H), 7.56 (s, 1H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.30 (dd, *J* = 8.6, 1.8 Hz, 1H), 6.39 (s, 2H), 3.59 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 153.1, 135.4, 135.2, 133.9, 133.2, 130.4, 124.6, 120.3,

114.4, 112.7, 103.5, 99.8, 59.9, 55.7; HRMS (ESI) m/z: Calcd for $C_{17}H_{17}BrNO_3S$ [M+H]⁺: 394.0107. Found: 394.0115. ¹H- and ¹³C-NMR data are matching with the literature known spectra.⁵

8. Gram-Scale Experimental Procedure for Thioindoles 3a and 4a

To a stirred solution of a sodium 4-methylbenzenesulfinate (**2a**, 10.7 g, 60.0 mmol, 1 equiv), a 1-methyl-1*H*-indole (**1a**, 18.8 mL, 150.0 mmol, 2.5 equiv) in CH₂Cl₂ (100.0 mL) was slowly added TMSOTf (43.5 mL, 240.0 mmol, 4 equiv) at 0 °C, the reaction was allowed to warm to room temperature and stirred for 12 h, then water (100 mL) and dichloromethane (100 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 100 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the desired C2-thioindole **3a** (yield 68%, 10.3g).

To a stirred solution of a sodium 4-methylbenzenesulfinate (**2a**, 10.7 g, 60.0 mmol, 1 equiv), a 1-methyl-1*H*-indole (**1a**, 18.8 mL, 150.0 mmol, 2.5 equiv) in CH₂Cl₂ (100.0 mL) was slowly added TMSCI (30.4 mL, 240.0 mmol, 4 equiv) at 0 °C, the reaction was allowed to warm to room temperature and stirred for 12 h, then water (100 mL) and dichloromethane (100 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 100 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the desired C3-thioindole **4a** (yield 71%, 10.7g).

9. Mechanistic Control Experiments

Progress of the reaction of 1a with 2a, for up to 12 h. The mixture of a sodium 4-methylbenzenesulfinate (**2a**, 0.2 mmol. 1 equiv), а 1-methyl-1*H*-indole (**1a**, 0.5 mmol, 2.5 equiv) and TMSCI (0.8 mmol, 4 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 10 min-12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The reaction was closely monitored by ¹H NMR spectroscopy using CH₂Br₂ as an internal standard.

During the 12 h reaction process, three peaks including those for sulfoxide **6a** (δ = 2.44 ppm), C3-thioindole **4a** (δ = 2.31 ppm) and indole dimer **7a** (δ = 2.73 ppm) were observed (Scheme S1), and the representative results are summarized in Table S3. Sulfoxide **6a** and indole dimer **7a** were obtained in 90% and 32% yields, respectively when the reaction time was 10 min (entry 1). C3-thioindole **4a** was obtained in 13% yield when the reaction time was 0.5 h (entry 2). Obviously, the yield of C3-thioindole **4a** was increasing up to 75% with the yield of sulfoxide **6a** decreasing from 90% to 13% (entries 1–5). Finally, C3-thioindole **4a** was obtained in 83% yield when the reaction time was 12 h, and sulfoxide **6a** might be a reaction intermediate in the synthesis of C3-thioindole **4a**.

Scheme S1. Progress of the reaction of 1a with 2a, for up to 12 h.

1a	+ 2a TMSCI (4 equiv) CH ₂ Cl ₂ , rt	N +	°,s−Tol + 4a N 6a	
Entry	Time	7a	6a	4a
1	10 min	32%	90%	0
2	0.5 h	24%	83%	13%
3	1 h	16%	67%	23%
4	3 h	9%	34%	48%
5	6 h	7%	13%	75%
6	12 h	< 5%	0	83%

Table S3. Progress of the reaction of 1a with 2a, for up to 12 ha

^a General conditions: **1a** (0.5 mmol), **2a** (0.2 mmol), and TMSCI (0.8 mmol) in solvent (1.0 mL) at 25 °C. The yields of **4a**, **6a** and **7a** were determined by ¹H NMR spectroscopy using 0.2 mmol of CH_2Br_2 as a standard.

1-Methyl-3-(1-methylindolin-2-yl)-1H-indole (7a)

White solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.22–7.10 (m, 4H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.58 (d, *J* = 7.8 Hz, 1H), 4.67 (dd, *J* = 11.1, 8.8 Hz, 1H), 3.82 (s, 3H), 3.36 (dd, *J* = 15.5, 8.8 Hz, 1H), 3.25 (dd, *J* = 15.5, 11.2 Hz, 1H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.3, 137.4, 129.1, 127.4, 127.2, 126.7, 123.9, 121.7, 120.1, 118.9, 117.7, 115.0, 109.3, 107.1, 64.6, 37.8, 34.0, 32.6; HRMS (ESI) m/z: Calcd for C₁₈H₁₉N₂ [M+H]⁺: 263.1543. Found: 263.1548.

1-Methyl-3-(p-tolylsulfinyl)-1H-indole (6a)

White solid; ¹H NMR (400 MHz, CDCl₃) δ: 7.62 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H),7.34–7.24 (m, 4H), 7.12–7.08 (m, 1H), 3.79 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 140.9, 140.3, 137.6, 132.5, 129.5, 124.8, 124.3, 123.2, 121.3, 119.8, 116.5, 110.0, 33.2, 21.2; HRMS (ESI) m/z: Calcd for C₁₆H₁₅NaNOS [M+Na]⁺: 292.0767. Found: 292.0765.

Several control experiments for the C3–H thiolation. The mixture of a sulfoxide (**6a**, 0.2 mmol, 1 equiv), a 1-methyl-1*H*-indole (**1a**, 0.2 mmol, 1 equiv) and TMSCI (0.8 mmol, 4 equiv) in CH_2Cl_2 (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane

 $(3 \times 10 \text{ mL})$. The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, elution 5% ethyl acetate in petroleum ether) to afford the C3-thioindole **4a** in 70% yield.

The mixture of a sodium 4-methylbenzenesulfinate (**2a**, 0.2 mmol, 1 equiv), a 1-benzyl-1*H*-indole (**1i**, 0.5 mmol, 2.5 equiv) and TMSCI (0.8 mmol, 4 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the C3-thioindole **4i** in 85% yield. In addition, 1-benzyl-3-chloro-1*H*-indole (**9a**) was also gained in 26% yield based on indole **1i**.

1-Benzyl-3-chloro-1*H*-indole (9a)

Pale yellow oil, 31.3 mg, 26% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.66 (d, *J* = 7.8 Hz, 1H), 7.34–7.28 (m, 4H), 7.25–7.17 (m, 2H), 7.14–7.12 (m, 2H), 7.10 (s, 1H), 5.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.7, 135.4, 128.8, 127.8, 126.8, 125.9, 124.5, 122.8, 120.1, 118.4, 109.9, 105.2, 50.1; HRMS (ESI) m/z: Calcd for C₁₅H₁₃CIN [M+H]⁺: 242.0731. Found: 242.0738.

The mixture of a sodium 4-methylbenzenesulfinate (**2a**, 0.2 mmol, 1 equiv), a 1-Benzyl-3-chloro-1*H*-indole (**9a**, 0.5 mmol, 2.5 equiv) and TMSCI (0.8 mmol, 4 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the the starting materials **9a** in 92% yield, and the C3-thioindole **4i** was not found.

Several control experiments for the C2–H thiolation. The mixture of a C3-thioindole (4a, 0.2 mmol, 1 equiv) and TMSOTf (0.4 mmol, 2 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous

Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 5% ethyl acetate in petroleum ether) to afford the C2-thioindole **3a** in 70% yield.

The mixture of a C3-thioindole (**4a**, 0.2 mmol, 1 equiv) and TMSOTf (0.4 mmol, 2 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 30 min, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the C2-thioindole **3a**, 2,3-bis-thioindole **5a** and dimer **7a** in 8%, 34% and 70% yields, respectively. In addition, C3-thioindole **4a** was also recovered in 15% yield.

1-Methyl-2,3-bis(p-tolylthio)-1H-indole (5a)

Pale yellow oil, 25.5 mg, 34% yield; ¹H NMR (400 MHz, CDCl₃) δ : 7.68 (d, J = 8.0 Hz, 1H), 7.40–7.31 (m, 2H), 7.19 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 7.3 Hz, 2H), 6.99–6.94 (m, 6H), 3.80 (s, 3H), 2.27 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 138.3, 136.2, 134.8, 134.8, 134.7, 132.1, 129.9, 129.4, 129.1, 127.8, 126.9, 123.8, 120.9, 120.3, 111.2, 110.0, 31.0, 20.9, 20.9; HRMS (ESI) m/z: Calcd for C₂₃H₂₂NS₂ [M+H]⁺: 376.1188. Found: 376.1191.

The mixture of a 2,3-bis-thioindole (**5a**, 0.2 mmol, 1 equiv), a 1-methyl-1*H*-indole (**1a**, 0.24 mmol, 1.2 equiv) and TMSOTf (0.8 mmol, 4 equiv) in CH₂Cl₂ (1.0 mL) was stirred at 25 °C for 12 h, then water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (100–200 mesh, gradient elution 2% \rightarrow 5% ethyl acetate in petroleum ether) to afford the C2-thioindole **3a** in 72% yield.

10. NMR Spectra Indole **1b** ¹H NMR (400 MHz, CDCI₃)

10.00 9.50 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 ppm (t1)

Indole 1c ¹H NMR (400 MHz, CDCl₃)

Indole 1d ¹H NMR (400 MHz, CDCl₃)

Indole **1e** ¹H NMR (400 MHz, CDCl₃)

Indole 1f ¹H NMR (400 MHz, CDCl₃)

Indole **1g** ¹H NMR (400 MHz, CDCl₃)

Indole **1h** ¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Indole **1i** ¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

Indole 1j ¹H NMR (400 MHz, CDCl₃)

 ^{13}C NMR (100 MHz, CDCl_3)

C2-Thioindole 3a

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3b

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3c

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3d

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3e

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3f

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole **3g** ¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3h

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3j

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3k

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3I

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3m

¹H NMR (400 MHz, CDCl₃)

2,3-bis-Thioindole 5m

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3n

2,3-bis-Thioindole 5n

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

170 160 150 140 130 110 100 90 80 70 60 50 40 30 20 10 0 200 190 180 120 ppm (t1)

C2-Thioindole 30

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole **3p**

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3q

¹H NMR (400 MHz, CDCl₃)

2,3-bis-Thioindole 5q

¹H NMR (400 MHz, CDCl₃)

2,3-bis-Thioindole **5r** ¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3s

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3t

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3u

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3v

¹H NMR (400 MHz, CDCl₃)

C2-Thioindole 3w

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4a

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4b

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4c

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4d

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4e

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4f

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4g

C3-Thioindole 4h

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4i

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4k

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4I

¹H NMR (400 MHz, CDCl₃)

^{13}C NMR (100 MHz, CDCl_3)

C3-Thioindole 4m

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4n

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 40

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4p

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4q

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4r

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4s

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4t

¹H NMR (400 MHz, CDCl₃)

 ^{13}C NMR (100 MHz, CDCl_3)

C3-Thioindole 4u

¹³C NMR (100 MHz, CDCl₃)

C3-Thioindole 4v

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4w

¹H NMR (400 MHz, CDCl₃)

C3-Thioindole 4x

¹H NMR (400 MHz, CDCl₃)

Indole dimer **7a** ¹H NMR (400 MHz, CDCl₃)

Sulfoxide 6a

¹H NMR (400 MHz, CDCl₃)

Compound 9a

¹H NMR (400 MHz, CDCl₃)

Compound **5a** ¹H NMR (400 MHz, CDCl₃)

Compound 24

¹H NMR (400 MHz, CDCl₃)

Compound 2b

¹H NMR (400 MHz, D2O)

ppm (t1)

Compound 4y

¹H NMR (400 MHz, DMSO-*d*₆)

12.50 12.00 11.50 11.00 10.50 10.00 9.50 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 ppm (t1)

¹³C NMR (100 MHz, DMSO-*d*₆)

11. References

- B. Du, P. Qian, Y. Wang, H. Mei, J. Han and Y. Pan, *Org. Lett.* 2016, 18, 4144.
- 2 R. Lang, L. Shi, D. Li, C. Xia and F. Li, *Org. Lett.* 2012, **14**, 4130.
- 3 W. J. Kerr, D. M. Lindsay, P. K. Owens, M. Reid, T. Tuttle and S. Campos. ACS Catal. 2017, **7**, 7182.
- 4 a) C. Binistia, L. Assogba, E. Touboul, C. Mounier, J. Huet, J. E. Ombetta, C. Z. Dong, C. Redeuilh, F. Heymans and J. J. Godfroid, *Eur. J. Med. Chem.* 2011, **36**, 809; b) G. Pifferi and R. Monguzzi, *J. Pharm. Sci. (Philadelphia, PA, U. S.)*, 1973, **62**, 1392.
- 5 A. G. Lavekar, D. Equbal, Saima and A. K. Sinha, *Adv. Synth. Catal.* 2018, **360**, 180.