Supporting information

for

Perfluorophenylboronic Acid-Catalyzed Direct α-Stereoselective Synthesis of 2-Deoxygalactosides from Deactivated Peracetylated D-Galactal

Madhu Babu Tatina, a Ziad Moussa, b Xia Mengxin, a Zaher M. A. Judeh a, *

1 School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, N1.2–B1-14, Singapore 637459

* Indicates the main/corresponding author

Tel.: +65-6790-6738; fax: +65-6794-7553; e-mail: zaher@ntu.edu.sg

2 Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates, P.O.Box 15551

Experimental data and copies of 1H and 13C NMR spectra of glycosides 4a-o, 6a–11a, and 12 are provided

[a] Madhu Babu Tatina, Ziad Moussa, Xia Mengxin, Zaher M. A. Judeh*
School of Chemical and Biomedical Engineering
Nanyang Technological University
Singapore, 62 Nanyang Drive, N1.2–B1-14, Singapore 637459
E-mail: zaher@ntu.edu.sg

[b] Ziad Moussa,
Department of Chemistry, College of Science,
United Arab Emirates University,
Al Ain, United Arab Emirates, P.O.Box 15551
Supporting information for this article is given via a link at the end of the document.
Table of contents

1. Materials and methods

2. General procedure for the synthesis of compounds 4a-o and 6a–11a

3. 1H NMR and 13C NMR spectra of glycosides 4a-o, 6a–11a, and 12
1. Materials and methods

Chemical reagents were purchased from Sigma-Aldrich or Alfa Aesar and were used as received without further purification. 1H NMR spectra were recorded at 300 MHz on a Bruker Avance DPX 300. 13C NMR spectra were recorded at 75.47 MHz on a Bruker Avance DPX 300. Unless stated otherwise, data refer to solutions in CDCl$_3$ with TMS as an internal reference. HRMS were recorded on a Qstar XL MS/MS system. Analytical TLC was performed using Merck 60 F254 precoated silica gel plates (0.2 mm thickness) and visualized using UV radiation (254 nm) or stained using ceric ammonium nitrate in 30% H$_2$SO$_4$ solution. Flash chromatography was performed using Merck silica gel 60 (60–120 mesh).

2 General procedure for the synthesis of 2-deoxy galactosides 4a-o and 6a-11a, and 12

2.1 Benzyl 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4a)1

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and benzyl alcohol 3 (0.4 mmol, 42 µl). Column chromatography purification using EtOAc:Hexane (2:8) gave 4a as colorless liquid (123 mg, 88%). 1H NMR (300 MHz, CDCl$_3$) δ 7.46 – 7.30 (m, 5H), 5.37-5.36 (m, 2H), 5.12 (d, $J = 3.1$ Hz, 1H), 4.71 (d, $J = 11.8$ Hz, 1H), 4.52 (d, $J = 11.8$ Hz, 1H), 4.22 (d, $J = 11.8$ Hz, 1H), 4.12 (d, $J = 6.5$ Hz, 1H), 4.12 (d, $J = 6.5$ Hz, 1H), 2.16 (s, 3H), 2.13 – 2.11 (m, 1H), 2.08 (s, 3H), 2.00 (s, 3H), 1.97 – 1.90 (m, 1H). 13C NMR (75 MHz, CDCl$_3$) δ 170.5, 170.3, 170.0, 137.1, 128.5,128.0,127.9, 96.5, 69.2, 66.8, 66.7, 66.2, 62.4, 30.1, 20.8, 20.76, 20.74. HRMS (ESI$^+$): m/z [M + H]$^+$ calcld for C$_{19}$H$_{25}$O$_8$:381.1549; found: 381.1558.

2.2 2-phenyl ethyl 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4b)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2-phenylethanol (0.4 mmol, 49 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4b as white solid (104 mg, 72%). 1H NMR (300 MHz, CDCl$_3$) δ 7.37 – 7.14 (m, 5H), 5.25 (t, $J = 5.0$ Hz, 2H), 5.00 (d, $J = 2.7$ Hz, 1H), 4.00 (d, $J = 6.5$ Hz, 2H), 3.90 – 3.74 (m, 2H), 3.68 (dd, $J = 11.3$, 4.8 Hz, 1H), 2.91 (t, $J = 6.8$ Hz, 2H), 2.13 (s, 3H), 2.09 (dd, $J = 7.9$, 6.1 Hz, 1H), 2.05 (s, 3H), 2.01 (d, $J = 3.6$ Hz, 3H), 1.91 – 1.82 (m, 1H). 13C NMR (75 MHz, CDCl$_3$) δ 170.5, 170.3, 170.0, 137.1, 128.5,128.0,127.9, 96.5, 69.2, 66.8, 66.7, 66.2, 62.4, 30.1, 20.8, 20.76, 20.74. HRMS (ESI$^+$): m/z [M + H]$^+$ calcld for C$_{20}$H$_{27}$O$_8$:395.1549; found: 395.1536.
2.3 Cyclohexyl 3,4,6-tri-O-acyl-2-deoxy-D-galactopyranoside (4c)

Prepared by the general procedure using 3,4,6-tri-O-acyetyl-D-galactal (0.34 mmol, 100 mg) and cyclohexanol (0.4 mmol, 42 µl). Column chromatography purification using EtOAc:Hexane (2:8) gave 4c as colorless liquid (102 mg, 75%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 5.32 (dd, \(J = 11.0, 4.2\) Hz, 2H), 5.17 (d, \(J = 3.0\) Hz, 1H), 4.23 (d, \(J = 6.5\) Hz, 1H), 4.09 (dd, \(J = 6.5, 2.5\) Hz, 1H), 2.14 (s, 3H), 2.08 (m, 1H), 2.05 (s, 3H), 1.99 (s, 3H), 1.91 – 1.81 (m, 2H), 1.73 (bs, 3H), 1.53 (bs, 1H), 1.41 – 1.19 (m, 5H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) δ 170.5, 170.4, 170.1, 95.5, 75.4, 66.8, 66.6, 66.4, 62.6, 31.5, 30.74, 25.5, 24.2, 23.9, 20.8, 20.7, 20.6. HRMS (ESI\(^+\)): m/z [M + H]\(^+\) calcd for C\(_{18}\)H\(_{29}\)O\(_8\): 373.1862; found: 373.1880.

2.4 O-[3,4,6-Tri-O-acyetyl-2-deoxy-D-galactopyranosyl]-N-carbobenzyloxy-L-serine methyl ester (4d)

Prepared by the general procedure using 3,4,6-tri-O-acyetyl-D-galactal (0.34 mmol, 100 mg) and \(N\)-(tert-butoxycarbonyl)-L-serine methyl ester (0.4 mmol, 42 µl). Column chromatography purification using EtOAc:Hexane (4:6) gave 4d as colorless liquid (162 mg, 84%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 7.37 (m, 5H), 5.76 (d, \(J = 8.3\) Hz, 1H), 5.33 (d, \(J = 2.7\) Hz, 1H), 5.26 – 5.10 (m, 4H), 4.99 (d, \(J = 3.0\) Hz, 1H), 4.64 – 4.48 (m, 1H), 4.12-4.05 (m, 3H), 3.94 (bs, 2H), 3.79 (s, 3H), 2.14 (s, 3H), 2.09 – 2.06 (m, 1H), 2.04 (s, 3H), 1.99 (s, 3H), 1.84 (dd, \(J = 12.8, 5.1\) Hz, 1H) \(^13\)C NMR (75 MHz, CDCl\(_3\)) δ 170.5, 170.4, 170.2, 170.1, 95.5, 75.4, 66.8, 66.6, 66.4, 62.6, 31.5, 30.74, 25.5, 24.2, 23.9, 20.8, 20.7, 20.6. HRMS (ESI\(^+\)): m/z [M + H]\(^+\) calcd for C\(_{18}\)H\(_{29}\)O\(_8\): 373.1862; found: 373.1880.

2.5 tert-butyl 3,4,6-tri-O-acyetyl-2-deoxy-D-galactopyranoside (4e)

Prepared by the general procedure using 3,4,6-tri-O-acyetyl-D-galactal (0.34 mmol, 100 mg) and \(t\)-butanol (0.4 mmol, 38 µl). Column chromatography purification using EtOAc:Hexane (2:8) gave 4e as colorless liquid (95 mg, 75%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 5.35-5.32 (m, 3H), 4.33 (t, \(J = 6.4\) Hz, 1H), 4.07 (dd, \(J = 6.6, 2.8\) Hz, 2H), 2.14 (s, 3H), 2.08 (ddd, \(J = 12.6, 6.4, 2.7\) Hz, 1H), 2.04 (s, 3H), 1.99 (s, 3H), 1.76 – 1.65 (m, 1H), 1.25 (s, 9H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) δ 170.5, 170.4, 170.2, 170.0, 136.1, 128.5, 128.2, 128.1, 98.2, 68.4, 67.2, 67.1, 66.4, 65.8, 62.4, 54.3, 52.7, 29.9, 20.8, 20.6.

2.6 phenoxy 3,4,6-tri-O-acyetyl-2-deoxy-D-galactopyranoside (4f)

Prepared by the general procedure using 3,4,6-tri-O-acyetyl-D-galactal (0.34 mmol, 100 mg) and phenol (0.4 mmol, 38 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4f as cream solid (105mg, 78%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 7.39 – 7.23 (m, 2H), 7.05 (m, 3H), 5.77 (d, \(J = 2.7\) Hz, 1H), 5.53 (ddd, \(J = 12.3, \)
5.1, 3.1 Hz, 1H), 5.42 (d, J = 2.6 Hz, 1H), 4.28 (t, J = 6.6 Hz, 1H), 4.09 (dd, J = 6.6, 2.5 Hz, 2H), 2.28 (td, J = 12.6, 3.5 Hz, 1H), 2.18 (s, 3H), 2.16 – 2.11 (m, 1H), 2.04 (s, 3H), 1.94 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.4, 170.3, 170.1, 156.3, 129.5, 122.3, 116.4, 95.8, 67.5, 66.4, 66.0, 62.0, 30.2, 20.9, 20.7, 20.6. HRMS (ESI⁺): m/z [M + H]⁺ calcd for C18H23O8:367.1393; found: 367.1407.

2.7 3-methylphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4g)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 136 mg) and m-cresol (0.4 mmol, 44 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4g as colorless liquid (98 mg, 70%). 1H NMR (300 MHz, CDCl3) δ 7.25 – 7.04 (m, 1H), 6.91 – 6.81 (m, 3H), 5.75 (d, J = 2.8 Hz, 1H), 5.52 (ddd, J = 12.3, 5.1, 3.1 Hz, 1H), 5.42 (d, J = 2.8 Hz, 1H), 4.29 (t, J = 6.4 Hz, 1H), 4.15 – 4.06 (m, 2H), 2.35 (s, 3H), 2.25 (dd, J = 12.5, 3.5 Hz, 1H), 2.18 (s, 3H), 2.05 (s, 3H), 1.95 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.4, 170.3, 170.1, 156.3, 139.5, 123.1, 117.2, 113.3, 95.8, 67.5, 66.5, 66.0, 62.1, 30.2, 21.5, 20.9, 20.7, 20.6. HRMS (ESI⁺): m/z [M + H]⁺ calcd for C19H25O8: 381.1549; found: 381.1558.

2.8 4-methylphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4h)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and p-cresol (0.4 mmol, 44 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4h as colorless liquid (112 mg, 80%). 1H NMR (300 MHz, CDCl3) δ 7.10 (d, J = 8.5 Hz, 2H), 6.98 (t, J = 5.6 Hz, 2H), 5.71 (d, J = 2.7 Hz, 1H), 5.52 (ddd, J = 12.3, 5.1, 3.1 Hz, 1H), 5.41 (d, J = 2.5 Hz, 1H), 4.38 – 4.21 (m, 1H), 4.19 – 3.99 (m, 2H), 2.31 (s, 3H), 2.24 (dd, J = 12.5, 3.5 Hz, 1H), 2.18 (s, 3H), 2.04 (s, 3H), 1.96 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.4, 170.3, 170.1, 154.2, 131.7, 129.9, 116.4, 96.0, 67.4, 66.5, 66.0, 62.0, 30.3, 20.9, 20.7, 20.6. HRMS (ESI⁺): m/z [M+H]⁺ calcd for C19H25O8:381.1549; found: 381.1556.

2.9 4-tert-butylphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4i)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 4-tert-butylphenol (0.4 mmol, 60 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4i as white solid (133 mg, 86%). 1H NMR (300 MHz, CDCl3) δ 7.35 – 7.22 (m, 2H), 7.01 (d, J = 8.8 Hz, 2H), 5.74 (d, J = 2.8 Hz, 1H), 5.53 (ddd, J = 12.3, 5.1, 3.1 Hz, 1H), 5.42 (d, J = 2.5 Hz, 1H), 4.40 – 4.22 (m, 1H), 4.17 – 4.01 (m, 2H), 2.26 (tt, J = 9.4, 4.7 Hz, 1H), 2.18 (s, 3H), 2.11 (dd, J = 12.7, 5.1 Hz, 1H), 2.05 (s, 3H), 1.94 (s, 3H), 1.32 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 170.4, 170.3, 170.1, 154.2, 131.7, 129.9, 116.4, 96.0, 67.4, 66.5, 66.0, 62.0, 30.3, 20.9, 20.7, 20.6.
2.10 4-methoxyphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4j)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 4-methoxyphenol (0.4 mmol, 50 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4j as cream solid (102 mg, 70%). 1H NMR (300 MHz, CDCl$_3$) δ 7.01 (d, $J = 9.1$ Hz, 2H), 6.84 (d, $J = 9.1$ Hz, 2H), 5.64 (d, $J = 2.7$ Hz, 1H), 5.50 (dd, $J = 12.6, 3.5$ Hz, 1H), 2.17 (s, 3H), 2.15 – 2.07 (m, 1H), 2.04 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 170.4, 170.3, 170.0, 155.0, 150.3, 117.8, 114.5, 96.6, 67.4, 66.5, 66.0, 62.1, 55.6, 30.3, 20.8, 20.7, 20.6. HRMS (ESI$^+$): m/z [M+H]$^+$ calcd for C$_{19}$H$_{24}$O$_9$: 397.1449; found: 397.1490.

2.11 3,5-methoxyphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4k)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 3,5-dimethoxyphenol (0.4 mmol, 62 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4k as cream solid (117 mg, 75%). 1H NMR (300 MHz, CDCl$_3$) δ 6.28 (d, $J = 2.2$ Hz, 2H), 6.17 (d, $J = 2.2$ Hz, 1H), 5.72 (d, $J = 2.6$ Hz, 1H), 5.61 – 5.44 (m, 1H), 5.40 (d, $J = 2.8$ Hz, 1H), 4.26 (t, $J = 6.4$ Hz, 1H), 4.16 – 4.07 (m, 2H), 3.77 (s, 6H), 2.26 (td, $J = 12.7, 3.5$ Hz, 1H), 2.17 (s, 3H), 2.14 – 2.10 (m, 1H), 2.04 (s, 3H), 1.96 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 170.5, 170.3, 170.0, 155.0, 150.3, 117.8, 114.5, 96.6, 67.4, 66.5, 66.0, 62.1, 55.3, 30.2, 20.8, 20.7, 20.5. HRMS (ESI$^+$): m/z [M + H]$^+$ calcd for C$_{20}$H$_{27}$O$_{10}$: 427.1604; found: 427.1632.

2.12 3-methoxyphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4l)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 3-methoxyphenol (0.4 mmol, 62 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4l as cream solid (107 mg, 74%). 1H NMR (300 MHz, CDCl$_3$) δ 7.20 (t, $J = 8.1$ Hz, 1H), 6.76 – 6.53 (m, 3H), 5.75 (d, $J = 2.7$ Hz, 1H), 5.52 (dd, $J = 12.3, 5.1, 3.0$ Hz, 1H), 5.42 (s, 1H), 4.28 (t, $J = 6.5$ Hz, 1H), 4.10 (d, $J = 6.5$ Hz, 2H), 3.81 (s, 3H), 2.27 (td, $J = 12.6, 3.5$ Hz, 1H), 2.18 (s, 3H), 2.14 – 2.08 (m, 1H), 2.10 – 2.00 (m, 3H), 1.96 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 170.5, 170.3, 170.1, 157.5, 152.9, 108.6, 108.0, 102.8, 95.8, 95.2, 94.6, 67.5, 66.4, 66.0, 62.0, 55.3, 30.2, 20.9, 20.7, 20.5. HRMS (ESI$^+$): m/z [M + H]$^+$ calcd for C$_{19}$H$_{25}$O$_9$: 397.1499; found:397.1499.

2.13 Naphthalen-2-yloxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4m)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2-naphthol (0.4 mmol, 50 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4m as green solid (117 mg, 75%). 1H NMR (300 MHz, CDCl$_3$) δ 7.60 – 7.10 (m, 7H), 7.06 (d, $J = 7.8$ Hz, 1H), 7.04 (d, $J = 7.8$ Hz, 1H), 6.75 (d, $J = 7.8$ Hz, 2H), 6.70 (d, $J = 7.8$ Hz, 2H), 5.38 (s, 3H), 4.28 (t, $J = 6.5$ Hz, 1H), 4.10 (d, $J = 6.5$ Hz, 2H), 3.81 (s, 3H), 2.27 (td, $J = 12.6, 3.5$ Hz, 1H), 2.18 (s, 3H), 2.14 – 2.08 (m, 1H), 2.10 – 2.00 (m, 3H), 1.96 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 170.5, 170.3, 170.1, 157.5, 152.9, 108.6, 108.0, 102.8, 95.8, 95.2, 94.6, 67.5, 66.4, 66.0, 62.0, 55.3, 30.2, 20.9, 20.7, 20.5. HRMS (ESI$^+$): m/z [M + H]$^+$ calcd for C$_{19}$H$_{25}$O$_9$: 397.1499; found:397.1499.
mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4m as cream solid (128 mg, 84%). 1H NMR (300 MHz, CDCl₃) δ 8.23 (dd, J = 6.0, 3.8 Hz, 1H), 7.92 – 7.76 (m, 1H), 7.59 – 7.49 (m, 3H), 7.39 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 7.4 Hz, 1H), 5.96 (d, J = 2.3 Hz, 1H), 5.70 (ddd, J = 12.0, 5.5, 3.0 Hz, 1H), 5.48 (d, J = 2.7 Hz, 1H), 4.33 (t, J = 6.7 Hz, 1H), 4.12 (d, J = 6.6 Hz, 2H), 2.45–2.28 (m, 2H), 2.21 (s, 3H), 2.09 (s, 3H), 1.93 (s, 3H).

13C NMR (75 MHz, CDCl₃) δ 170.4, 170.3, 170.2, 151.9, 134.5, 127.6, 126.5, 125.74, 125.71, 122.0, 121.7, 108.3, 96.1, 67.8, 66.5, 66.2, 62.0, 30.5, 20.9, 20.7, 20.6.

2.14 4-fluorophenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4n)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal (0.34 mmol, 100 mg) and 4-fluorophenol (0.4 mmol, 45 mg). Column chromatography purification using EtOAc:Hexane (2:8) gave 4n as cream solid (101 mg, 72%). 1H NMR (300 MHz, CDCl₃) δ 7.06 – 6.94 (m, 4H), 5.67 (d, J = 2.8 Hz, 1H), 5.50 (ddd, J = 12.3, 3.5 Hz, 1H), 2.27 (td, J = 12.6, 3.2 Hz, 1H), 2.18 (s, 3H), 2.12 (dd, J = 12.6, 5.7 Hz, 1H), 2.04 (s, 3H), 1.96 (s, 3H).

13C NMR (75 MHz, CDCl₃) δ 170.4, 170.3, 170.1, 159.8, 156.6, 152.4, 150.39, 117.8, 117.7, 116.0, 115.7, 96.4, 67.6, 66.4, 65.9, 62.1, 30.2, 20.8, 20.7, 20.6. HRMS (ESI⁺): m/z [M + H]⁺ caledd for C₁₈H₂₂O₈F:385.1299; found: 385.1282.

2.15 4-formylphenoxy 3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (4o)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal (0.34 mmol, 100 mg) and 4-hydroxybenzaldehyde (0.4 mmol, 49 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 4o as colorless gummy liquid (81 mg, 56%). 1H NMR (300 MHz, CDCl₃) δ 9.92 (s, 1H), 7.86 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 5.87 (s, 1H), 5.50 (dd, J = 12.1, 3.8 Hz, 1H), 5.42 (s, 1H), 4.21 (t, J = 6.5 Hz, 1H), 4.08 (m, 2H), 2.31 (td, J = 12.7, 3.2 Hz, 1H), 2.18 (s, 3H), 2.12 (bs, 1H), 2.05 (s, 3H), 1.92 (s, 3H).

13C NMR (75 MHz, CDCl₃) δ 190.8, 170.2, 170.1, 159.7, 156.6, 152.4, 150.39, 117.8, 117.7, 116.0, 115.7, 96.4, 67.6, 66.4, 65.9, 62.1, 30.2, 20.8, 20.7, 20.5.

2.16 Methyl 2,3,4-tri-O-acetyl-6-O-(3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranosyl)-α-D-glucopyranoside (6a)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal (0.34 mmol, 100 mg) and 2,3,4-tri-O-acetyl-methyl-α-D–glucopyranoside (0.4 mmol, 128 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 6a as colorless liquid (126 mg, 58%). 1H NMR (300 MHz, CDCl₃) δ 5.49 (t, J = 9.7 Hz, 1H), 5.41 – 5.22 (m, 2H), 5.05 (dd, J = 11.1, 8.4 Hz, 2H), 4.99 – 4.84 (m, 2H), 4.21 – 4.03 (m, 3H), 3.96 (ddd, J = 10.2, 5.3, 2.3 Hz, 1H), 3.72 (ddd, J = 11.1, 5.4 Hz, 1H), 3.53 (ddd, J = 11.1, 2.4 Hz, 1H), 3.43 (s, 3H), 2.17 (d, J = 9.9 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H), 1.92 (dd, J = 12.8, 5.1 Hz, 1H).

13C NMR (75 MHz, CDCl₃) δ 170.5, 170.3, 170.1, 169.9, 169.7, 169.6, 97.3, 96.5, 70.8, 70.2, 69.1, 67.9, 66.8, 66.6, 66.0, 65.6, 62.5, 55.3,
29.9, 20.8, 20.7, 20.6. HRMS (ESI\(^+\)): m/z [M + H]\(^+\) calcd for C\(_{25}\)H\(_{37}\)O\(_{16}\): 593.2082; found: 593.2078.

2.17 Methyl 2,3,4-tri-O-benzoyl-6-O-(3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranosyl)-a-D-glucopyranoside (7a)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2,3,4-tri-O-benzoyl-methyl-\(\alpha\)-D-glucopyranoside (0.4 mmol, 202 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 7a as colorless liquid (157 mg, 55%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.98 (dd, \(J = 10.6, 4.2\) Hz, 4H), 7.92 – 7.80 (m, 2H), 7.53 (t, \(J = 7.0\) Hz, 2H), 7.40 (m, 5H), 7.34 – 7.18 (m, 2H), 6.17 (t, \(J = 9.5\) Hz, 1H), 5.64 (t, \(J = 9.9\) Hz, 1H), 5.44 – 5.18 (m, 3H), 5.06 (d, \(J = 2.9\) Hz, 1H), 4.34 – 4.07 (m, 3H), 3.98 (dd, \(J = 6.4, 2.8\) Hz, 2H), 3.88 (dd, \(J = 11.0, 4.9\) Hz, 1H), 3.64 (dd, \(J = 10.9, 2.8\) Hz, 1H) 3.50 (s, 3H), 2.13 (s, 3H), 2.08 (d, \(J = 1.6\) Hz, 1H), 2.00 (s, 3H), 1.92 (s, 3H), 1.89 – 1.81 (m, 1H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 170.4, 170.2, 169.9, 165.7, 165.2, 133.4, 133.3, 133.1, 129.9, 129.8, 129.7, 129.2, 129.06, 129.0, 128.48, 128.42, 128.2, 97.4, 97.0, 71.9, 70.4, 69.5, 68.2, 66.7, 66.6, 66.1, 66.0, 62.6, 55.6, 29.8, 20.9, 20.7, 20.6. HRMS (ESI\(^+\)): m/z [M + H]\(^+\) calcd for C\(_{40}\)H\(_{43}\)O\(_{16}\): 779.2551; found: 779.2577.

2.18 Phenyl 2,3,4-tri-O-acetyl-6-(3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranosyl)-1-thio-\(\beta\)-D-glucopyranoside (8a)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2,3,4-tri-O-acetyl-thio-\(\alpha\)-D-mannoside (0.4 mmol, 159 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 8a as colorless liquid (152 mg, 62%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.37 (d, \(J = 8.1\) Hz, 2H), 7.17 (d, \(J = 8.0\) Hz, 2H), 5.32 – 5.16 (m, 3H), 5.02-4.92 (m, 2H), 4.71 (d, \(J = 10.0\) Hz, 1H), 4.24 (d, \(J = 5.7\) Hz, 1H), 4.15 – 4.03 (m, 3H), 3.80 – 3.63 (m, 2H), 3.63 – 3.53 (m, 1H), 2.36 (s,3H), 2.15 (s, 3H), 2.13 (bs, 1H), 2.11 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.88 (dd, \(J = 12.6, 5.1\) Hz, 1H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 170.5, 170.2, 169.9, 165.7, 165.2, 133.4, 133.3, 133.1, 129.9, 129.8, 129.7, 129.2, 129.06, 129.0, 128.48, 128.42, 128.2, 97.4, 97.0, 71.9, 70.4, 69.5, 68.2, 66.7, 66.6, 66.1, 66.0, 62.6, 55.6, 29.8, 20.9, 20.7, 20.6. HRMS (ESI\(^+\)): m/z [M + H]\(^+\) calcd for C\(_{40}\)H\(_{43}\)O\(_{15}\)S: 685.2166; found: 685.2178.

2.19 Phenyl 2,3,4-tri-O-acetyl-6-(3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranosyl)-1-thio-\(\beta\)-D-mannopyranoside (9a)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2,3,4-tri-O-acetyl-thio-\(\alpha\)-D-mannoside (0.4 mmol, 159 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 9a as colorless liquid (157 mg, 64%). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.38 (d, \(J = 8.0\) Hz,
2.20 Methyl 2,3-di-O-acetyl-5-O-(3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranosyl)-α-D-ribofuranoside (10a)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2,3-di-O-acetyl-methyl-α-D-ribofuranoside (0.4 mmol, 99 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 10a as colorless liquid (114 mg, 60%). ¹H NMR (300 MHz, CDCl₃) δ 5.38-5.35 (m, 2H), 5.22 (d, J = 4.9 Hz, 1H), 4.92 (s, 1H), 4.28 – 4.18 (m, 2H), 3.79 (dd, J = 11.1, 4.6 Hz, 1H), 3.62 (dd, J = 10.7, 4.7 Hz, 1H), 3.40 (s, 3H), 2.15 (s, 3H), 2.13 (s, 3H), 2.09 (m, 1H), 2.00 (s, 3H), 1.92 (dd, J = 12.7, 5.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 170.3, 169.9, 106.6, 97.9, 74.7, 71.8, 68.3, 66.8, 66.6, 66.0, 62.3, 55.3, 29.9, 20.8, 20.7, 20.6, 20.5. HRMS (ESI⁺): m/z [M + H]⁺ calcd for C₂₂H₃₃O₁₄: 521.1870; found: 521.1876.

2.21 Methyl 2,3-di-O-acetyl-5-O-(3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranosyl)-α-D-arabinofuranoside (11a)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and 2,3-di-O-acetyl-methyl-α-D-arabinofuranoside (0.4 mmol, 99 mg). Column chromatography purification using EtOAc:Hexane (3:7) gave 11a as colorless liquid (124 mg, 65%). ¹H NMR (300 MHz, CDCl₃) δ 5.36 (m, 2H), 5.10 (m, 3H), 4.93 (s, 1H), 4.27 (t, J = 6.5 Hz, 1H), 4.21 – 4.05 (m, 3H), 3.94 (dd, J = 11.1, 4.6 Hz, 1H), 3.75 (dd, J = 11.0, 3.3 Hz, 1H), 3.42 (s, 3H), 2.15 (s, 3H), 2.13 (br s, 1H), 2.12 (s, 3H), 2.08 (s, 6H), 2.00 (s, 3H), 1.92 (dd, J = 12.5, 5.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.5, 170.3, 169.9, 169.9, 169.7, 106.6, 97.7, 81.6, 81.3, 68.3, 66.8, 66.6, 66.0, 62.3, 55.3, 29.9, 20.8, 20.7, 20.6, 20.7. HRMS (ESI⁺): m/z [M + H]⁺ calcd for C₂₂H₃₃O₁₄: 521.1870; found: 521.1871.

2.22 Trideuteromethyl-3,4,6-tri-O-acetyl-2-deoxy-D-galactopyranoside (12)

Prepared by the general procedure using 3,4,6-tri-O-acetyl-D-galactal 2 (0.34 mmol, 100 mg) and CD₃OD (0.4 mmol, 17 µl). Column chromatography purification using EtOAc:Hexane (2:8) gave 12 as
white solid (96 mg, 85%). 1H NMR (300 MHz, CDCl$_3$) δ 5.35 – 5.21 (m, 2H), 4.90 (d, J = 3.2 Hz, 1H), 4.11 (m, 3H), 2.14 (s, 3H), 2.05 (s, 3H), 2.0 (dd, J = 12.0, 3.0 Hz, 1H), 1.98 (s, 3H), 1.88-184 (m, 1H). 13C NMR (75 MHz, CDCl$_3$) δ 170.5, 170.3, 170.0, 98.4, 66.6, 66.5, 66.1, 62.5, 30.0, 20.8, 20.7.

References

3. Spectral images of compounds 4a-n, 6a-11a, and 12

1H NMR of compound 4a

13C NMR of compound 4a
1H NMR of compound 4b

13C NMR of compound 4b
1H NMR of compound 4c

13C NMR of compound 4c
1H NMR of compound 4d

13C NMR of compound 4d
1H NMR of compound 4e

13C NMR of compound 4e
1H NMR of compound 4f

13C NMR of compound 4f
1H NMR of compound 4g

13C NMR of compound 4g
1H NMR of compound 4h

13C NMR of compound 4h
1H NMR of compound 4i

13C NMR of compound 4i
\(^1\text{H}\) NMR of compound 4j

\(^{13}\text{C}\) NMR of compound 4j
1H NMR of compound 4k

13C NMR of compound 4k
^1H NMR of compound 4l

\[\text{Proton NMR spectrum of compound 4l} \]

^13C NMR of compound 4l

\[\text{Carbon NMR spectrum of compound 4l} \]
1H NMR of compound 4m

13C NMR of compound 4m
1H NMR of compound 4n

13C NMR of compound 4n
^{1}H NMR of compound 4o

^{13}C NMR of compound 4o
1H NMR of compound 6a

13C NMR of compound 6a
1H NMR of compound 7a

13C NMR of compound 7a
1H NMR of compound 8a

13C NMR of compound 8a
1H NMR of compound 9a

13C NMR of compound 9a
1H NMR of compound 10a

13C NMR of compound 10a
1H NMR of compound 11a

13C NMR of compound 11a
1H NMR of compound 12

13C NMR of compound 12
DEPT of compound 12

1H NMR of compound 2-deoxy methyl galactoside