Supporting Information

Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X$_L$

Xuan Zhang, Dinesh Thummuri, Yonghan He, Xingui Liu, Peiyi Zhang, Daohong Zhou and Guangrong Zheng
Table of Contents

1.) **Figure S1** Western blot analysis of BCL-X_L degradation in MOLT-4 cells.
2.) **Table S1** Cytotoxicity against MOLT-4.
3.) **Figure S2** Effect of POM on the protein levels of IZFK1 and BCL-X_L with or without XZ424.
4.) **Figure S3** Flow cytometry analysis of apoptosis in MOLT-4 using Annexin-V and PI staining after 24 h treatment with XZ424.
5.) **Scheme S1** Warhead synthesis.
6.) **Scheme S2** Synthetic route for PROTACs XZ906, XZ424, XZ418, and negative control compounds XZ906-NC and XZ424-NC.
7.) Experimental Section: Chemistry.
8.) Biological Methods.
9.) References.
Figure S1 Western blot analysis of BCL-X_L degradation in MOLT-4 cells. (A) Effect of protein level change in MOLT-4 cells after 16 h treatment with 0.1% DMSO or XZ424, XZ424-NC, XZ906, XZ906-NC, XZ418, compounds 1, 2, and 3 at 100 nM. (B) BCL-X_L levels were normalized to β-actin.

Table S1 Cytotoxicity against MOLT-4 cells.

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC<sub>50</sub> (nM)<sup>a</sup> (72h) MOLT-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1155463</td>
<td>6.2</td>
</tr>
<tr>
<td>XZ906</td>
<td>123</td>
</tr>
<tr>
<td>XZ418</td>
<td>140</td>
</tr>
<tr>
<td>XZ424</td>
<td>51</td>
</tr>
<tr>
<td>XZ424-NC</td>
<td>684</td>
</tr>
<tr>
<td>XZ906-NC</td>
<td>832</td>
</tr>
</tbody>
</table>

^aEach value was reproduced in three experiments.
Figure S2 Western blot analysis of pomalidomide (POM), XZ-424, or combination induced changes of IZFK1 and BCL-X_L protein levels in MOLT-4 cells.

Fig. S3 (A, B, and C) Flow cytometry analysis of apoptosis using Annexin-V and PI staining. Cells were treated with DMSO and XZ424 (100 nM) for 24 h, XZ424 (100 nM) significantly increased the percentage of apoptotic cells and QVD (10 µM) pre-treatment for 4 h inhibited the apoptosis induced by XZ424. Data are presentative figures of two independent experiments.
Scheme S1 Warhead synthesis. Reagents and conditions: (i) TBSCI, imidazole, DMF. (ii) S3, Pd(PPh$_3$)$_4$, Cul, triethylamine, DMF, 100 °C. (iii) TBAF, THF. (iv) S5, NaH, THF. (v) TFA, DCM. (vi) Azidobutanoyl chloride, triethylamine, DCM. (vii) Chloromethyl methyl ether, Na$_2$CO$_3$, DMF.
Scheme S2. Synthetic route for BCL-X_L PROTACs. Reagents and conditions: (i) DIPEA, DMF, 90 °C. (ii) 3, CuSO₄·5H₂O, sodium L-ascorbate, tBuOH, H₂O, 65 °C. (iii) a) 6, CuSO₄·5H₂O, sodium L-ascorbate, tBuOH, THF, H₂O, 55 °C; b) HCl in 1,4-dioxane, DCM, MeOH. (iv) HATU, DIPEA, DCM. (v) Iodomethane, tBuOK, DMSO.
Experimental Section: Chemistry

General Methods. THF, DCM, and DMF were obtained via a solvent purification system by filtering through two columns packed with activated alumina and 4 Å molecular sieve, respectively. All other chemicals obtained from commercial sources were used without further purification. Flash chromatography was performed using silica gel (230–400 mesh) as the stationary phase. Reaction progress was monitored by thin layer chromatography (silica-coated glass plates) and visualized by UV light, and/or by LC-MS. 1H NMR spectra were recorded in CDCl$_3$ or CD$_3$OD at 400 MHz or 600 MHz. Chemical shifts δ are given in ppm using tetramethylsilane as an internal standard. Multiplicities of NMR signals are designated as singlet (s), broad singlet (br s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). All final compounds for biological testing were of ≥95.0% purity as analyzed by LC–MS, performed on an Advion AVANT LC system with the expression CMS using a Thermo Accucore™ Vanquish™ C18+ UHPLC Column (1.5 µm, 50 x 2.1 mm) at 40 °C. Gradient elution was used for UHPLC with a mobile phase of acetonitrile and water containing 0.1% formic acid. High resolution mass spectra (HRMS) were recorded on a Bruker Impact II QTOF mass spectrometer.

(4-Bromo-2-fluorophenoxy)(tert-butyl)dimethylsilane (S2): A mixture of 4-bromo-2-fluorophenol S1 (1.0 g, 5.24 mmol), TBSCI (1.03 g, 6.83 mmol), and imidazole (713 mg, 10.48 mmol) in DMF (20 mL) was stirred at room temperature for 16 h. Then it was diluted with water (40 mL) and extracted with ethyl acetate. The organic phase was washed with water x1, brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The residue was further purified by column chromatography to afford the title compound as colorless oil (1.60 g, yield 100%). 1H NMR (400 MHz, CDCl$_3$) δ 7.22 (dd, $J = 10.1$, 2.4 Hz, 1H), 7.15–7.07 (m, 1H), 6.79 (t, $J = 8.7$ Hz, 1H), 1.00 (s, 9H), 0.19 (d, $J = 0.9$ Hz, 6H) ppm.

tert-Butyl 4-(3-(4-(tert-butyldimethylsilyloxy)-3-fluorophenyl)prop-2-ynyl)piperazine-1-carboxylate (S4): A mixture of compound S2 (612 mg, 2.0 mmol), compound S3 (448 mg, 2.0 mmol), Pd(PPh$_3$)$_4$ (68 mg, 0.06 mmol), Cul (12 mg, 0.06 mmol), and triethylamine (700 µL, 4.2 mmol) were stirred in DMF (15 mL) at 100 °C under an argon atmosphere for 20 h. The reaction mixture was poured into water (30 mL) and extracted with ethyl acetate. The
organic phase was washed with water x1, brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The residue was further purified by column chromatography to afford the title compound (220 mg, yield 24%). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, J = 11.1, 2.0 Hz, 1H), 7.10–7.04 (m, 1H), 6.83 (t, J = 8.5 Hz, 1H), 3.58–3.41 (m, 6H), 2.68–2.50 (m, 4H), 1.47 (s, 9H), 1.00 (s, 9H), 0.19 (d, J = 0.9 Hz, 6H) ppm. LC-MS (ESI): m/z 449.3 [M+H]⁺.

tert-Butyl 4-(3-(3-fluoro-4-hydroxyphenyl)prop-2-ynyl)piperazine-1-carboxylate (S5): To a solution of compound S4 (180 mg, 0.40 mmol) in THF (5 mL) was added TBAF solution (1.0 M in THF, 0.8 mL). The reaction mixture was stirred at room temperature for 30 min and poured into water. Then it was extracted with ethyl acetate and the organic phase was washed with saturated NH₄Cl (aq) x1, brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The residue was further purified by column chromatography to afford the title compound as brown solid (126 mg, yield 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.09–7.00 (m, 2H), 6.89 (t, J = 8.8 Hz, 1H), 3.59–3.45 (m, 6H), 2.70–2.54 (m, 4H), 2.08 (s, 1H), 1.47 (s, 9H) ppm. LC-MS (ESI): m/z 335.2 [M+H]⁺.

2-(8-(Benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(4-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)prop-1-ynyl)-2-fluorophenoxy)propyl)thiazole-4-carboxylic acid (1): Compound S6 was synthesized according to reported method.³ Compound S5 (200 mg, 0.60 mmol) in DMF was cooled to 0 °C and 95% NaH (40 mg, 1.58 mmol) was added to the solution. Then it was stirred for 10 min before the addition of compound S6 (250 mg, 0.40 mmol) in THF (5 mL). The reaction mixture was stirred at room temperature for 3 h and quenched by adding water (1.0 mL). The solution was stirred for 20 min and the pH was adjusted to 5.0 using 1N HCl (aq). Subsequently, it was poured into water and extracted with ethyl acetate. The organic phase was washed with water x1, brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The residue was further purified by column chromatography to afford the title compound (130 mg, yield 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.76 (m, 1H), 7.69–7.59 (m, 1H), 7.54–7.41 (m, 1H), 7.36–7.29 (m, 4H), 7.14–7.05 (m, 2H), 6.80 (t, J = 8.5 Hz, 1H), 4.93 (s,
2-(8-(Benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(2-fluoro-4-(3-(piperazin-1-yl)prop-1-ynyl)phenoxy)propyl)thiazole-4-carboxylic acid trifluoroacetate (2): A mixture of compound 1 (130 mg, 0.16 mmol) and TFA (1.0 mL, 13.1 mmol) in DCM (3 mL) was stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure and the crude product was crystallized in a mixture of Et₂O and MeOH to give the title compound as a pale yellow solid (110 mg, yield 83%). ¹H NMR (400 MHz, CD₃OD) δ 7.93 (d, \(J = 7.7 \) Hz, 1H), 7.78 (d, \(J = 7.7 \) Hz, 1H), 7.63 (d, \(J = 7.2 \) Hz, 1H), 7.52–7.28 (m, 5H), 7.18–7.07 (m, 2H), 6.99 (t, \(J = 8.7 \) Hz, 1H), 4.91 (s, 2H), 4.07 (t, \(J = 6.1 \) Hz, 2H), 3.89–3.77 (m, 2H), 3.62 (s, 2H), 3.28–3.20 (m, 6H), 3.09–3.05 (m, 2H), 2.93–2.80 (m, 4H), 2.20–2.07 (m, 2H) ppm. LC-MS (ESI): m/z 711.2 [M+H]+.

5-(3-(4-(3-(4-(4-Azidobutanoyl)piperazin-1-yl)prop-1-ynyl)-2-fluorophenoxy)propyl)thiazole-4-carboxylic acid (3): 4-Azidobutanoyl chloride (17.7 mg, 0.12 mmol) was prepared according to the literature². It was dissolved in DCM (660 µL) and added dropwise into a mixture of compound 2 (100 mg, 0.12 mmol) and triethylamine (157 µL, 1.13 mmol) in DCM (4 mL) at room temperature. The reaction mixture was stirred for 10 min and quenched with MeOH (1 mL), diluted with water, and extracted with DCM. The organic layer was washed with water x1, brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The crude product was crystallized in MeOH to give the title compound as pale yellow solid (85 mg, yield 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, \(J = 7.8 \) Hz, 1H), 7.69–7.59 (m, 2H), 7.44–7.39 (m, 4H), 7.15–7.05 (m, 2H), 6.82 (t, \(J = 8.7 \) Hz, 1H), 4.95 (s, 2H), 4.04 (t, \(J = 6.3 \) Hz, 2H), 3.81–3.64 (m, 4H), 3.44–3.24 (m, 6H), 3.06 (t, \(J = 5.9 \) Hz, 2H), 2.89–2.58 (m, 4H), 2.42 (t, \(J = 7.2 \) Hz, 2H), 2.22–2.11 (m, 2H), 1.99–1.87 (m, 2H) ppm. LC-MS (ESI): m/z 822.3 [M+H]+.
Methoxymethyl 5-(3-(4-(3-(4-(4-azidobutanoyl)piperazin-1-yl)prop-1-yn-1-yl)-2-fluorophenoxy)propyl)-2-(8-(benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)thiazole-4-carboxylate (6)

Compound 3 (26 mg, 0.032 mmol), Na$_2$CO$_3$ (4.1 mg, 0.039 mmol) and chloromethyl methyl ether (2.8 mg, 0.035 mmol) were stirred in DMF (2 mL) for 24 h. Then it was poured into water and extracted with ethyl acetate. The organic phase was washed with water x1, brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The resulting mixture was purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford the title compound (16.0 mg, yield 84%, 8.0 mg was recovered, yield was calculated based on recovered starting material). 1H NMR (400 MHz, CDCl$_3$) δ 7.90–7.77 (m, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.37–7.25 (m, 4H), 7.18 (t, J = 7.6 Hz, 1H), 7.12–7.04 (m, 2H), 6.81 (t, J = 8.4 Hz, 1H), 5.34 (s, 2H), 4.88 (s, 2H), 4.03 (t, J = 6.2 Hz, 2H), 3.81 (t, J = 6.0 Hz, 2H), 3.76–3.64 (m, 2H), 3.63–3.49 (m, 4H), 3.44 (s, 3H), 3.36 (t, J = 6.3 Hz, 2H), 3.25 (t, J = 7.4 Hz, 2H), 3.00 (t, J = 5.9 Hz, 2H), 2.71–2.53 (m, 4H), 2.40 (t, J = 7.2 Hz, 2H), 2.23–2.06 (m, 2H), 1.98–1.84 (m, 2H) ppm. LC-MS (ESI): m/z 866.3 [M+H]$^+$.

2-(2,6-Dioxopiperidin-3-yl)-4-(2-(2-(2-(prop-2ynyloxy)ethoxy)ethoxy)ethylamino)isoindoline-1,3-dione (S9)

Compound S7 (100 mg, 0.36 mmol), amine S8 (68 mg, 0.36 mmol), and DIPEA (120 µL, 0.72 mmol) in DMF (4 mL) were stirred at 90 °C for 16 h. The reaction mixture was poured into water and extracted with ethyl acetate. The organic phase was washed with water x1, brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The residue was further purified by column chromatography to afford the title compound as a green solid (95 mg, yield 60%). 1H NMR (400 MHz, CDCl$_3$) δ 8.02 (s, 1H), 7.64–7.34 (m, 1H), 7.10 (d, J = 7.1 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 6.67–6.11 (m, 1H), 4.91 (dd, J = 12.1, 5.3 Hz, 1H), 4.20 (d, J = 2.2 Hz, 2H), 3.83–3.60 (m, 10H), 3.55–3.40 (m, 2H), 2.99–2.60 (m, 3H), 2.43 (t, J = 2.1 Hz, 1H), 2.21–2.03 (m, 1H) ppm. LC-MS (ESI): m/z 444.1 [M+H]$^+$.
2-(8-(Benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(4-(4-(4-(4-(2-(2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisindolin-4-ylamino)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)butanoyl)piperazin-1-yl)-2-fluorophenoxy)propylthiazole-4-carboxylic acid (XZ906): To a mixture of compound 3 (18 mg, 0.022 mmol) and compound S9 (10 mg, 0.023 mmol) in 'BuOH (1 mL) under an Argon atmosphere was added CuSO$_4$·5H$_2$O (1.0 mg, 0.004 mmol) and sodium L-ascorbate (0.8 mg, 0.004 mmol) in water (0.2 mL). The mixture was stirred at 65 °C for 16 h and cooled to room temperature. Then it was poured into water and extracted with DCM. The organic phase was washed with brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The crude product was purified using reverse phase preparative HPLC to give the title compound as yellow solid (4.0 mg, yield 14%). 1H NMR (400 MHz, CDCl$_3$) δ 10.17 (s, 1H), 7.92–7.81 (m, 2H), 7.71 (d, $J = 7.2$ Hz, 1H), 7.54 (s, 1H), 7.50–7.42 (m, 2H), 7.37 (t, $J = 7.6$ Hz, 1H), 7.33–7.25 (m, 2H), 7.15–7.03 (m, 3H), 6.87 (d, $J = 8.5$ Hz, 1H), 6.79 (t, $J = 8.4$ Hz, 1H), 6.48 (s, 1H), 4.98–4.85 (m, 3H), 4.68–4.53 (m, 2H), 4.37 (t, $J = 6.3$ Hz, 2H), 4.05–3.94 (m, 4H), 3.84–3.54 (m, 16H), 3.42 (t, $J = 5.2$ Hz, 2H), 3.32–3.09 (m, 6H), 3.02 (t, $J = 6.1$ Hz, 2H), 2.89–2.67 (m, 3H), 2.33–2.08 (m, 7H) ppm. LC-MS (ESI): m/z 1265.3 [M+H]$^+$.

2-(2,6-Dioxopiperidin-3-yl)-4-((2-(2-prop-2-yn-1-yl)ethoxy)ethyl)amino)isoindoline-1,3-dione (4): Compound S7 (107 mg, 0.39 mmol), amine S10 (84 mg, 0.58 mmol), and DIPEA (193 µL, 1.17 mmol) in DMF (5 mL) were stirred at 90 °C for 16 h. The reaction mixture was poured into water and extracted with ethyl acetate. The organic phase was washed with water x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The residue was purified by column chromatography using ethyl acetate and hexanes as eluents to afford the title compound as a green solid (50 mg, yield 32%). 1H NMR (400 MHz, CDCl$_3$) δ 7.98 (s, 1H), 7.62–7.35 (m, 1H), 7.11 (d, $J = 7.1$ Hz, 1H), 6.93 (d, $J = 8.5$ Hz, 1H), 4.92 (dd, $J = 11.9, 5.3$ Hz, 1H), 4.21 (d, $J = 2.3$ Hz, 2H), 3.78–3.66 (m, 6H), 3.49 (t, $J = 5.4$ Hz, 2H), 2.93–2.68 (m, 3H), 2.48–2.41 (m, 1H), 2.18–2.09 (m, 1H) ppm. LC-MS (ESI): m/z 400.0 [M+H]$^+$.

![Chemical Structure](image)
2-(8-(Benza[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(4-(4-(4-((2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisindolin-4-yl)amino)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)butanoyl)piperazin-1-yl)prop-1-yn-1-yl)-2-fluorophenoxy)propyl)thiazole-4-carboxylic acid (XZ424): To a mixture of compound 6 (13.0 mg, 0.015 mmol) and compound 4 (8.0 mg, 0.020 mmol) in tBuOH-THF (1:1, v/v, 2 mL) under an Argon atmosphere was added CuSO$_4$·5H$_2$O (0.82 mg, 0.033 mmol) and sodium L-ascorbate (0.65 mg, 0.033 mmol) in water (0.4 mL). The mixture was stirred at 55 °C for 16 h and cooled to room temperature. Then it was poured into water and extracted with DCM. The organic phase was washed with brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The crude product was purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford an intermediate, which was dissolved in DCM-MeOH (3:1, v/v, 4 mL) and mixed with HCl solution (4.0 M in 1,4-dioxane, 0.1 mL). The reaction mixture was stirred at room temperature for 3 h and the solvent was removed under reduced pressure. Then Et$_2$O was added into the residue and the formed solid was collected by filtration to afford the title compound (15.4 mg, yield 84%). 1H NMR (400 MHz, CD$_3$OD) δ 8.02 (s, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.79 (d, J = 7.9 Hz, 2H), 7.61–7.44 (m, 4H), 7.36 (t, J = 7.5 Hz, 1H), 7.31–7.18 (m, 2H), 7.12–6.95 (m, 3H), 5.14 (s, 2H), 5.01 (dd, J = 12.7, 5.4 Hz, 1H), 4.64 (s, 2H), 4.47 (t, J = 6.5 Hz, 2H), 4.34 (s, 2H), 4.16 (t, J = 5.5 Hz, 2H), 3.99–3.88 (m, 2H), 3.77–3.44 (m, 14H), 3.38–3.33 (m, 4H), 3.26–3.19 (m, 2H), 2.89–2.62 (m, 3H), 2.52–2.38 (m, 2H), 2.25–2.04 (m, 5H) ppm. LC-MS (ESI): m/z 1221.2 [M+H]$^+$. HRMS m/z calcd for C$_{61}$H$_{61}$FN$_{12}$O$_{11}$S$_2$Na 1243.3906, found 1243.3899 [M+Na]$^+$.

$\text{N-(2-(2,6-Dioxopiperidin-3-yl)-1-oxoisindolin-4-yl)-2-(2-(2-prop-2-ynyloxy)ethoxy)ethoxy)acetamide (S13):}$ Lenalidomide S11 (61 mg, 0.24 mmol), acid S12 (57 mg, 0.28 mmol), HATU (94 mg, 0.25 mmol) and DIPEA (59 µL, 0.36 mmol) were stirred in DCM (5 mL) overnight. The mixture was concentrated under reduced pressure and purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford the title compound (58 mg, yield 54%). 1H NMR (400 MHz, CDCl$_3$) δ 8.92 (s, 1H), 7.97 (s, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.9 Hz, 0.36 mmol) were stirred in DCM (5 mL) overnight. The mixture was concentrated under reduced pressure and purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford the title compound (58 mg, yield 54%). 1H NMR (400 MHz, CDCl$_3$) δ 8.92 (s, 1H), 7.97 (s, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 7.9 Hz,
1H), 7.49 (t, J = 7.7 Hz, 1H), 5.20 (dd, J = 13.3, 5.1 Hz, 1H), 4.45 (s, 2H), 4.14 (d, J = 3.4 Hz, 2H), 3.96 (s, 2H), 3.83–3.57 (m, 8H), 2.98–2.70 (m, 2H), 2.49–2.28 (m, 2H), 2.27–2.13 (m, 1H) ppm. LC-MS (ESI): m/z 444.2 [M+H]⁺.

N

![Chemical structure](image1)

2-(8-(Benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(4-(3-(4-(4-(2-(2-(2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisodolin-4-ylamino)-2-oxoethoxy)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)butanoyl)piperazin-1-yl)prop-1-ynyl)-2-fluorophenoxy)propyl)thiazole-4-carboxylic acid (XZ418): To a mixture of compound 6 (12.0 mg, 0.014 mmol) and compound S13 (7.4 mg, 0.017 mmol) in tBuOH-THF (1:3, v/v, 4 mL) under an Argon atmosphere was added CuSO₄·5H₂O (0.70 mg, 0.0028 mmol) and sodium L-ascorbate (0.56 mg, 0.0028 mmol) in water (0.4 mL). The mixture was stirred at 55 °C for 16 h and cooled to room temperature. Then it was poured into water and extracted with DCM. The organic phase was washed with brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The crude product was purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford an intermediate, which was dissolved in DCM-MeOH (3:1, v/v, 4 mL) and mixed with HCl solution (4.0 M in 1,4-dioxane, 0.1 mL). The mixture was stirred at room temperature for 10 min and the solvent was removed under reduced pressure. Then Et₂O was added into the residue and the formed solid was collected by filtration to afford the title compound (11.8 mg, yield 67%). ¹H NMR (400 MHz, CD₃OD) δ 8.00–7.89 (m, 2H), 7.84–7.76 (m, 2H), 7.69 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 7.1 Hz, 1H), 7.59–7.43 (m, 4H), 7.37 (t, J = 7.6 Hz, 1H), 7.31–7.19 (m, 2H), 7.06 (t, J = 8.5 Hz, 1H), 5.23–5.04 (m, 3H), 4.57–4.45 (m, 4H), 4.41 (t, J = 6.8 Hz, 2H), 4.33 (s, 2H), 4.23–4.12 (m, 4H), 3.93 (t, J = 5.7 Hz, 2H), 3.82–3.63 (m, 10H), 3.37–3.33 (m, 8H), 3.21 (t, J = 5.5 Hz, 2H), 2.96–2.67 (m, 2H), 2.57–2.36 (m, 3H), 2.28–2.11 (m, 5H) ppm. LC-MS (ESI): m/z 1265.3 [M+H]⁺. HRMS m/z calcd for C₆₃H₆₆FN₁₂O₁₂S₁₂ 1265.4349, found 1265.4338 [M+H]⁺.

4-Fluoro-2-(1-methyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (S14): A mixture of S7 (100 mg, 0.36 mmol), iodomethane (25 µL, 0.40 mmol), and tBuOK (81 mg, 0.72 mmol) in DMSO (1.5 mL) was stirred at room temperature for 2 h. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The crude product was
purified by column chromatography to afford the title compound (47 mg, yield 45%). 1H NMR (400 MHz, CDCl$_3$) δ 7.82–7.68 (m, 2H), 7.46–7.39 (m, 1H), 5.03–4.93 (m, 1H), 3.21 (s, 3H), 3.04–2.94 (m, 1H), 2.93–2.71 (m, 2H), 2.18–2.06 (m, 1H) ppm. LC-MS (ESI): m/z 291.1 [M+H]$^+$.

2-(1-Methyl-2,6-dioxopiperidin-3-yl)-4-((2-(2-(2-(2-(2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethoxy)ethyl)amino)isoindoline-1,3-dione (S15): A mixture of S14 (80 mg, 0.28 mmol), S8 (52 mg, 0.28 mmol), and DIPEA (230 µL, 1.39 mmol) in DMF (2.5 mL) was stirred at 90 °C overnight. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The crude product was purified by column chromatography to afford the title compound (49 mg, yield 38%). 1H NMR (400 MHz, CDCl$_3$) 7.53–7.44 (m, 1H), 7.10 (dd, $J = 7.1$, 0.6 Hz, 1H), 6.93 (d, $J = 8.5$ Hz, 1H), 6.48 (t, $J = 5.7$ Hz, 1H), 4.97–4.86 (m, 1H), 4.20 (d, $J = 2.4$ Hz, 2H), 3.77–3.65 (m, 10H), 3.54–3.45 (m, 2H), 3.21 (s, 3H), 3.06–2.90 (m, 1H), 2.86–2.68 (m, 2H), 2.43 (t, $J = 2.4$ Hz, 1H), 2.17–2.04 (m, 1H) ppm. LC-MS (ESI): m/z 458.1 [M+H]$^+$.

2-(8-(Benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(2-fluoro-4-(3-(4-(4-((2-(2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethoxy)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)butanoyl)piperazin-1-yl)prop-1-yn-1-yl)phenoxy)propyl)thiazole-4-carboxylic acid (XZ906-NC): To a mixture of compound 6 (17.3 mg, 0.020 mmol) and compound S15 (11.0 mg, 0.024 mmol) in 1BuOH-THF (1:3, v/v, 4 mL) under an Argon atmosphere was added CuSO$_4$·5H$_2$O (1.0 mg, 0.004 mmol) and sodium L-ascorbate (0.8 mg, 0.004 mmol) in water (0.4 mL). The mixture was stirred at 55 °C for 16 h and cooled to room temperature. The reaction mixture was poured into water and extracted with DCM. The organic phase was washed with brine x1, dried over Na$_2$SO$_4$, filtered and evaporated to dryness. The crude product was purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford an intermediate, which was dissolved in DCM-MeOH (3:1, v/v, 4 mL) and mixed with HCl solution (4.0 M in 1,4-dioxane, 0.1 mL). The mixture was stirred at room temperature for 2 h and the solvent was removed under reduced pressure. Then Et$_2$O was added into the residue and the formed solid was collected by filtration to afford the title compound (11.8 mg, yield 46%). 1H NMR (600 MHz, CD$_3$OD) δ 7.99–7.91 (m,
2H), 7.80 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 7.3 Hz, 1H), 7.57–7.46 (m, 4H), 7.37 (t, J = 7.6 Hz, 1H), 7.31–7.22 (m, 2H), 7.10–7.04 (m, 2H), 7.02 (d, J = 7.1 Hz, 1H), 5.10–5.02 (m, 3H), 4.61 (s, 2H), 4.46 (t, J = 6.6 Hz, 2H), 4.36 (s, 2H), 4.15 (t, J = 5.9 Hz, 2H), 3.90 (t, J = 5.9 Hz, 2H), 3.74–3.63 (m, 12H), 3.49–3.46 (m, 2H), 3.33–3.30 (m, 8H), 3.17 (t, J = 5.9 Hz, 2H), 3.12 (s, 3H), 2.92–2.83 (m, 2H), 2.72–2.62 (m, 1H), 2.44 (t, J = 6.4 Hz, 2H), 2.24–2.16 (m, 4H), 2.12–2.05 (m, 1H) ppm. HRMS m/z calcld for C_{64}H_{68}FN_{12}O_{12}S_{12} 1279.4505, found 1279.4508 [M+H]+.

2-(1-Methyl-2,6-dioxopiperidin-3-yl)-4-((2-(2-(2-(2-(prop-2-yn-1-yloxy)ethoxy)ethoxy)ethyl)amino)isoindoline-1,3-dione (5): A mixture of S14 (50 mg, 0.17 mmol), S10 (25 mg, 0.17 mmol), and DIPEA (145 μL, 0.88 mmol) in DMF (1.5 mL) was stirred at 90 °C overnight. Water (10 mL) was added and the resulting mixture was extracted with ethyl acetate. The organic phase was washed brine, dried over Na₂SO₄, filtered, and evaporated to dryness. The crude product was purified by column chromatography to afford the title compound (34 mg, yield 48%). 1H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.5, 7.1 Hz, 1H), 7.10 (d, J = 7.1 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 6.48 (t, J = 5.8 Hz, 1H), 5.01–4.81 (m, 1H), 4.21 (d, J = 2.4 Hz, 2H), 3.79–3.62 (m, 6H), 3.57–3.42 (m, 2H), 3.21 (s, 3H), 3.06–2.65 (m, 3H), 2.44 (t, J = 2.4 Hz, 1H), 2.18–2.06 (m, 1H) ppm. LC-MS (ESI): m/z 414.1 [M+H]+.

2-(8-(Benzo[d]thiazol-2-ylcarbamoyl)-3,4-dihydroisoquinolin-2(1H)-yl)-5-(3-(2-fluoro-4-(3-(4-(4-((2-(2-(1-methyl-2,6-dioxopiperidin-3-yl)-1,3-dioxoisindolin-4-yl)amino)ethoxy)ethoxy)methyl)-1H-1,2,3-triazol-1-yl)butanoyl)piperazin-1-yl)prop-1-yn-1-yl)phenoxy)propyl)thiazole-4-carboxylic acid (XZ424-NC): compound 6 (15.0 mg, 0.017 mmol) and compound 5 (10.0 mg, 0.024 mmol) in tBuOH-THF (1:3, v/v, 4 mL) under an Argon atmosphere was added CuSO₄·5H₂O (0.84 mg, 0.003 mmol) and sodium L-ascorbate (0.67 mg, 0.003 mmol) in water (0.4 mL). The mixture was stirred at 55 °C for 16 h and cooled to room temperature. The reaction mixture was poured into water and extracted with DCM. The organic phase was washed with brine x1, dried over Na₂SO₄, filtered and evaporated to dryness. The crude product was purified by silica gel flash column chromatography using DCM and MeOH as eluents to afford an intermediate, which was dissolved in DCM-MeOH (3:1, v/v, 4 mL) and mixed with HCl solution (4.0 M in 1,4-dioxane, 0.1 mL). The mixture was stirred at room temperature for 2 h and
the solvent was removed under reduced pressure. Then Et₂O was added into the residue and the formed solid was collected by filtration to afford the title compound (8.6 mg, yield 41%). ¹H NMR (600 MHz, CD₃OD) δ 8.13 (s, 1H), 8.00 – 7.93 (m, 1H), 7.86 – 7.80 (m, 2H), 7.61 – 7.49 (m, 4H), 7.39 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.25 (dd, J = 11.5, 1.9 Hz, 1H), 7.11 – 7.06 (m, 2H), 7.03 (d, J = 7.0 Hz, 1H), 5.17 (s, 2H), 5.05 (dd, J = 12.9, 5.5 Hz, 1H), 4.68 (s, 2H), 4.51 (t, J = 6.7 Hz, 2H), 4.37 (s, 2H), 4.20 – 4.16 (m, 2H), 3.99 – 3.94 (m, 2H), 3.77 – 3.68 (m, 11H), 3.61 – 3.59 (m, 1H), 3.50 (t, J = 5.1 Hz, 2H), 3.39 – 3.34 (m, 4H), 3.27 – 3.23 (m, 2H), 3.11 (s, 3H), 2.93 – 2.81 (m, 2H), 2.71 – 2.61 (m, 1H), 2.56 – 2.41 (m, 2H), 2.27 – 2.18 (m, 4H), 2.14 – 2.04 (m, 1H) ppm. HRMS m/z calcd for C₆₂H₆₄FN₁₂O₁₁S₂ 1235.4243, found 1235.4234 [M+H]+.

Biological Methods.

Competitive binding assay. To determine the binding affinities of compounds to BCL-Xₐ protein, AlphaScreen competitive binding assay was performed at room temperature and all reagents were diluted in a buffer containing 25 mM HEPES pH 7.5, 100 mM NaCl, 0.1% BSA, and 0.005% Tween-20. Purified recombinant His-tagged BCL-Xₐ (Cat. No. SRP0187 for BCL-Xₐ and Cat. No. SRP0186 for BCL-2, Sigma-Aldrich, St. Louis, MO, USA) were incubated with 4-fold serially diluted compounds and a fixed concentration of biotin-tagged BAD peptides (Cat. No., AnaSpec, Fremont, CA) to a final volume of 40 µL in 96-well PCR plate. After 2 h incubation, 5 µL 6X His-Acceptor beads (final concentration 20 µg/mL) (Cat. No. AL128M, PerkinElmer, Houston, TX) were added to each well and incubated for 1 h. Thereafter, 5 µL streptavidin-donor beads were added (final concentration 20 µg/mL) (Cat. No. 6760002 Perkin Elmer) to each well and incubated for 30 min. 17 µL of each sample was transferred into adjacent wells of 384-well proxy plate (Cat. No. 6008280, Perkin Elmer) prior to luminescence detection on Biotek’s Synergy Neo2 multi-mode plate reader equipped with AlphaScreen filter cube. The inhibition constant (Kᵢ) was calculated using non-linear regression, one site, competitive binding with peptide concentration value and experimentally determined Kᵢ value between peptide and BCL-Xₐ inputted.

Cell lines and culture. MOLT-4 (Cat# CRL-1582) cell line was recently purchased from American Type Culture Collection (ATCC, Manassas, VA). MOLT-4 cells were cultured in RPMI 1640 media (Life Technologies, Carlsbad, CA, USA) supplemented with 10% FBS (Atlanta Biologicals, Flowery Branch, GA, USA) and 1% penicillin-streptomycin solution (Thermo Fisher Scientific, Waltham, MA, USA).

Cell viability assay. Cell viability was measured by Tetrazolium-based MTS assay (Promega, Madison, WI, USA). 5×10⁴ to 1×10⁵ MOLT-4 cells were seeded and treated in 96-well plates for 72 h. The EC₅₀ values of individual agents were calculated with GraphPad Prism 7 software (GraphPad Software, La Jolla, CA, USA).

Immunoblotting. Cells were collected and lysed in Lysis buffer (Boston Bio Products, Ashland, MA, USA) supplied with protease and phosphatase inhibitor cocktails (Sigma-Aldrich, St. Louis, MO, USA). The equal amount of protein lysates
was separated on pre-casted 4-20% Tris-glycine gels (Bio-Rad, Hercules, CA, USA). Thereafter, the proteins were transferred to PVDF membranes (MilliporeSigma, Billerica, MA, USA). The membranes were blocked with 5% w/v non-fat dry milk in TBS + Tween-20 (0.1% v/v), and then probed with primary antibodies for overnight at 4° C. Next day, the membranes were washed and incubated with appropriate HRP-conjugated secondary antibodies. The signal was detected using ECL substrate (MilliporeSigma) and captured on X-ray films or ChemiDoc MP Imaging System (Bio-Rad). The band intensities were calculated on ImageJ software and normalized to equal loading control β-actin.

Human platelet isolation and viability assays. Platelet rich plasma (PRP) was purchased from Zenbio (Cat. No. SER-PRP-SDS, Research Triangle Park, NC, USA). PRP was transferred into a 50 mL tube containing 5 mL acid citrate buffer (Cat. No. sc-214744, Santa Cruz Biotechnology). To prevent clotting, prostaglandin E1 (PGE1, Cat. No. sc-201223A, Santa Cruz Biotechnology) and apyrase (Cat. No. A6237, Sigma-Aldrich) were added to final concentrations of 1 µM and 0.2 units/mL, respectively. After gently mixing the solution, platelets were pelleted by centrifugation at 1200 g for 10 min without break. Pelleted platelets were gently washed without disrupting platelets in 2 mL HEPES Tyrode’s buffer (Cat. No. PY-921WB, Boston BioProducts, Ashland, MA, USA) containing 1 µM PGE1 and 0.2 units/mL apyrase. After washing, pellets were slowly suspended in 10 mL HEPES Tyrode’s buffer containing 1 µM PGE1 and 0.2 units/mL apyrase. Then platelets number was counted using a HEMAVET 950FS hematology analyzer (Drew Scientific, Inc., Oxford, CT, USA). For viability assays, platelet number was adjusted to 2 × 10^8/mL in HEPES Tyrode’s buffer containing 1 µM PGE1 and 0.2 units/mL apyrase. Each treatment was given in 2 mL platelet suspension in 15 mL polypropylene tubes. The tubes were placed on rotating platform at room temperature and the viability of platelets was measured after 24 h treatment by using the MTS reagent (Cat. No. G1111, Promega, Madison, WI, USA). The data were analyzed by GraphPad Prism 7 software for the calculation of EC_{50} values.

References
