Electronic Supplementary Information (ESI) for:

Synthesis of Structured Polysiloxazanes via Piers–Rubinsztajn Reaction

Liqing Ai, a,b Yi Chen, a,b Lijuan He, c Yongming Luo, *a* Shuhong Li d and Caihong Xu *a,b*

a Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

E-mail: caihong@iccas.ac.cn; luom@iccas.ac.cn

b University of Chinese Academy of Sciences, Beijing, 100049, China.

c Aerospace Institute of Advanced Materials & Processing Technology, Beijing, 100074, China.

d School of Science, Beijing Technology and Business University, Beijing 100037, China.
Table of Contents

1. Experimental Section ...3
2. Characterization Data ..4
3. Copies of NMR and MALDI-TOF Spectra of Siloxazanes ..7
4. Copies of NMR and Gel Permeation Chromatography (GPC) Charts of Polymers27
5. X-ray Crystallographic Details ..29
6. Computational Details ...39
7. References ..42
1. Experimental Section

General. All commercially available chemicals and reagents were used without further purification unless otherwise indicated. NMR spectroscopy was performed at 298 K using a Bruker AVANCE 400 spectrometer (400 MHz, 1H, in CDCl$_3$; 126 MHz, 13C, in CDCl$_3$) with solvent signal allotted as internal reference, and 29Si NMR was recorded on a Bruker AVANCE II+ 400 spectrometer (79 MHz) in CDCl$_3$ used chromium acetylacetonate as a nonpolar paramagnetic relaxation agent, and 19F NMR was recorded on AVANCE III 500WB spectrometer (470 MHz) in Toluene-d$_8$. MALDI-TOF spectra were recorded with Voyager-Elite (Matrix Assisted Laser Desorption/ Ionization Time of Flight) mass spectrometer (NaI were used as the salt and DT or 5-MSCA as the matrix). Single-crystal X-ray diffraction (XRD) data acquisition was performed on an ST Saturn 724+ diffractometer. All products were purified through column chromatography using neutral alumina with 200–300 mesh size using petroleum ether/ethyl acetate = 100 : 1 as an eluent unless otherwise stated.

Materials. 1,3-dimethoxy-1,1,3,3-tetraphenyldisilazane and 1,3-dimethoxy-2,4-dimethyl-2,4-diphenyldisilazane were prepared according to the reported method1,2. Triethylsilane, dimethylvinylsilane, and dimethylphenylsilane were used as received from Innochem. Trivinylsilane was obtained according to the literature3. Toluene was distilled from sodium under nitrogen before use.

General procedure.

(A) P-R reaction of 1a with Triethylsilane. (Table 1, entry 1). B(C$_6$F$_5$)$_3$ (100 mg/mL in toluene, 0.16 mL, 0.031 mmol) was added dropwise to a solution of 1a (0.88 g, 2.00 mmol), Et$_3$SiH (0.49 g, 4.2 mmol) in toluene (3 mL) under nitrogen. The reaction mixture was stirred at room temperature for 30 min. After concentration under reduced pressure, the resulting mixture was purified by alumina column chromatography to give 0.24g (0.23 mmol) of compound 4a in 23% yield as a white solid, 5a (0.12 mmol) in 18% yield, and the designed siloxazane 3a (0.18 mmol) in 9% yield.

Entry 2~7 in Table 1 were performed in the same manner as described for entry 1 using respective dimethoxydisilazane and hydrosilane.

(B) P-R reaction of 1a with Si-H Terminated Oligosiloxane. (Table 2, entry 1). To a solution of 1a (0.88 g, 2.00 mmol), B(C$_6$F$_5$)$_3$ (5.12 mg, 0.01 mmol) in toluene (3 mL) was added dropwise oligosiloxane (1.07 g, 2.00 mmol) under nitrogen within 5 min. The reaction mixture was stirred at room temperature for 30 min. After concentration under reduced pressure, a large amount of hexane was added into the crude product. Then the precipitated catalyst was separated from the resulting mixture by centrifugation to produce polysiloxazane (1.78 g) in 93% yield as a pale yellow viscous liquid.

Entry 2~11 in Table 2 were performed in the same manner as described for entry 1 using respective
2. Characterization Data

1,1,3,3-tetraphenyl-N1,N3-bis(3,3,3-triethyl-1,1-diphenyldisiloxanyl)disiloxane-1,3-diamine (4a)

\[\text{Et}_3\text{Si} \overset{\text{O}}{\text{S}} \text{N} \overset{\text{O}}{\text{Si}} \text{Et}_3 \]

\(^1\text{H} \text{NMR (400 MHz, CDCl}_3) \) \(\delta \) 7.52 – 6.81 (m, 40H), 1.70 (s, 2H), 0.67 (t, \(J = 7.9 \text{ Hz}, 18\text{H} \)), 0.31 (q, \(J = 7.8 \text{ Hz}, 12\text{H} \)). \(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3) \) \(\delta \) 136.95, 136.39, 134.93, 134.54, 129.37, 129.22, 127.30, 127.26, 6.84, 6.24. \(^{29}\text{Si} \text{NMR (79 MHz, CDCl}_3) \) \(\delta \) 11.27, -32.11, -34.84. HRMS (MOLDI-TOF) m/z: calcd. for C\textsubscript{60}H\textsubscript{61}N\textsubscript{2}O\textsubscript{3}Si\textsubscript{6}[M + H]\(^+\): 1025.32978; found: 1025.329200.

N1-(methoxydiphenylsilyl)-1,1,3,3-tetraphenyl-N3-(3,3,3-triethyl-1,1-diphenyldisiloxanyl)disiloxane-1,3-diamine (2a)

\[\text{Et}_3\text{Si} \overset{\text{O}}{\text{S}} \text{N} \overset{\text{O}}{\text{Si}} \text{Et}_3 \]

\(^1\text{H} \text{NMR (400 MHz, CDCl}_3) \) \(\delta \) 7.60 – 7.00 (m, 40H), 3.28 (s, 3H), 1.96 (s, 1H), 1.80 (s, 1H), 0.76 (t, \(J = 7.9 \text{ Hz}, 9\text{H} \)), 0.40 (q, \(J = 7.9 \text{ Hz}, 6\text{H} \)). \(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3) \) \(\delta \) 136.97, 136.40, 136.21, 134.94, 134.85, 134.65, 134.57, 129.54, 129.39, 129.24, 127.50, 127.38, 127.32, 127.27, 50.61, 6.84, 6.25. HRMS (MOLDI-TOF) m/z: calcd. for C\textsubscript{55}H\textsubscript{60}N\textsubscript{2}NaO\textsubscript{3}Si\textsubscript{5}[M + Na]\(^+\): 959.33480; found: 959.333974.

1,1,3,3-tetraphenyl-N1-(1,1,3,3-tetraphenyl-3-((3,3,3-triethyl-1,1-diphenyldisiloxanyl)amino)disiloxanyl)-N3-(3,3,3-triethyl-1,1-diphenyldisiloxanyl)disiloxane-1,3-diamine (5a)

\[\text{Et}_3\text{Si} \overset{\text{O}}{\text{S}} \text{N} \overset{\text{O}}{\text{Si}} \text{Et}_3 \]

\(^1\text{H} \text{NMR (400 MHz, CDCl}_3) \) \(\delta \) 7.35 – 6.80 (m, 60H), 1.68 (s, 1H), 1.58 (s, 1H), 1.46 (s, 1H), 0.66 (t, \(J = 8.0 \text{ Hz}, 18\text{H} \)), 0.29 (q, \(J = 8.0 \text{ Hz}, 12\text{H} \)). \(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3) \) \(\delta \) 136.93, 136.29, 136.18, 134.94, 134.79, 134.51, 129.29, 129.27, 129.16, 127.28, 127.22, 6.82, 6.22. HRMS (MOLDI-TOF) m/z: calcd. for C\textsubscript{84}H\textsubscript{94}N\textsubscript{3}O\textsubscript{4}Si\textsubscript{8}[M + H]\(^+\): 1432.53985; found: 1432.538936.

Bis(1,1-diphenyl-3,3,3-trivinyldisiloxanyl)amine

\[\text{Ph} \overset{\text{O}}{\text{Si}} \overset{\text{O}}{\text{S}} \text{N} \overset{\text{O}}{\text{Si}} \text{Et}_3 \]

\(^1\text{H} \text{NMR (400 MHz, CDCl}_3) \) \(\delta \) 7.56 – 7.06 (m, 20H), 6.09 – 5.84 (m, 12H), 5.82 – 5.56 (m, 6H), 1.94 (s, 1H). \(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3) \) \(\delta \) 136.50, 135.28, 134.90, 134.70, 129.42, 127.34. \(^{29}\text{Si} \text{NMR (79 MHz, CDCl}_3) \) \(\delta \) -24.77, -31.36. HRMS (MOLDI-TOF) m/z: calcd. for C\textsubscript{36}H\textsubscript{46}NO\textsubscript{2}Si\textsubscript{4}[M + H]\(^+\): 695.333974; found: 695.333974.

dimethoxydisilazane and oligosiloxane.
\[+ \text{H}^+ \] found: 630.21361; found: 630.213671.

\[\text{N}^1,\text{N}^3-\text{bis}(1,1-\text{diphenyl-3,3,3-trivinyldisiloxanyl}-1,1,3,3-\text{tetr phenyldisiloxane-1,3-diamine} \]

\[\text{N}^1,\text{N}^3-\text{bis}(1,1-\text{diphenyl-3,3,3-trivinyldisiloxanyl}-1,1,3,3-\text{tetr phenyldisiloxane-1,3-diamine} \]

\[\text{V}_{3}\text{Si} \equiv \text{O} \quad \text{Si} \quad \text{N} \quad \text{Si} \quad \text{O} \quad \text{SiV}_{3} \]

\[^1\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 7.53 - 6.90 \text{ (m, 40H)}, 6.08 - 5.77 \text{ (m, 12H)}, 5.74 - 5.44 \text{ (m, 6H), 1.75 (s, 1H), 1.21 (s, 1H).} \quad ^{13}\text{C} \text{ NMR} (126 \text{ MHz, CDCl}_3) \delta 136.43, 136.26, 135.23, 134.98, 134.87, 134.73, 134.61, 129.39, 129.33, 127.34, 127.29. \text{ HRMS (MOLDI-TOF) m/z: calcd. for C}_{60}\text{H}_{73}\text{N}_{2}\text{O}_{3}\text{Si}_{6}[M+ \text{H}]^+: 1037.42368; \text{ found: 1037.423871.} \]

\[\text{Bis}(3,3-\text{dimethyl-1,1-diphenyl-3-vinyl disiloxanyl)amine} \]

\[\text{N}^1,\text{N}^3-\text{bis}(1,1-\text{diphenyl-3,3,3-trivinyldisiloxanyl)-1,1,3,3-tetraphen yldisiloxane-1,3-diamine} \]

\[\text{V}_{3}\text{Si} \equiv \text{O} \quad \text{Si} \quad \text{N} \quad \text{Si} \quad \text{O} \quad \text{SiV}_{3} \]

\[^1\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 7.56 - 7.04 \text{ (m, 20H)}, 5.99 (dd, \text{J} = 20.3, 14.9 \text{ Hz, 2H}), 5.81 (dd, \text{J} = 14.9, 4.0 \text{ Hz, 2H}), 5.59 (dd, \text{J} = 20.3, 4.0 \text{ Hz, 2H}), 1.86 (s, 1H), 0.00 (s, 12H). \quad ^{13}\text{C} \text{ NMR} (126 \text{ MHz, CDCl}_3) \delta 138.96, 136.82, 134.32, 131.54, 129.13, 127.13. \quad ^{29}\text{Si} \text{ NMR} (79 \text{ MHz, CDCl}_3) \delta -1.74, -31.92. \text{ HRMS (MOLDI-TOF) m/z: calcd. for C}_{32}\text{H}_{40}\text{NO}_{2}\text{Si}_{4}[M+ \text{H}]^+: 582.21361; \text{ found: 582.213002.} \]

\[\text{N}^1,\text{N}^3-\text{bis}(3,3-\text{dimethyl-1,1,3-triphenyldisiloxanyl)-1,1,3,3-tetraphenyl disiloxane-1,3-diamine} \]

\[\text{N}^1,\text{N}^3-\text{bis}(3,3-\text{dimethyl-1,1,3-triphenyldisiloxanyl)-1,1,3,3-tetraphenyl disiloxane-1,3-diamine} \]

\[\text{V}_{3}\text{Si} \equiv \text{O} \quad \text{Si} \quad \text{N} \quad \text{Si} \quad \text{O} \quad \text{SiV}_{3} \]

\[^1\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3) \delta 7.36 - 6.79 \text{ (m, 30H)}, 1.70 (s, 1H), 0.00 (s, 12H). \quad ^{13}\text{C} \text{ NMR} (126 \text{ MHz, CDCl}_3) \delta 139.40, 136.79, 134.61, 133.18, 129.40, 129.20, 127.64 (d, \text{J} = 1.9 \text{ Hz}), 127.41, 0.67. \quad ^{29}\text{Si} \text{ NMR} (79 \text{ MHz, CDCl}_3) \delta -1.34, -32.88. \text{ HRMS (MOLDI-TOF) m/z: calcd. for C}_{40}\text{H}_{34}\text{NO}_{2}\text{Si}_{4}[M+ \text{H}]^+: 682.24491; \text{ found: 682.244418.} \]

\[\text{N}^1,\text{N}^3-\text{bis}(3,3-\text{dimethyl-1,1,3-triphenyldisiloxanyl)-1,1,3,3-tetraphenyl disiloxane-1,3-diamine} \]
1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 6.81 (m, 50H), 1.63 (s, 1H), 1.40 (s, 1H), 0.00 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 139.31, 136.64, 136.30, 134.93, 134.54, 133.16, 129.39, 129.30, 129.14, 127.58, 127.33, 0.65. 29Si NMR (79 MHz, CDCl$_3$) δ -1.54, -32.05, -33.41. HRMS (MOLDI-TOF) m/z: calcd. for C$_{64}$H$_{65}$N$_2$O$_3$Si$_6$ [M + H]$^+$: 1077.36108; found: 1077.361040.

Bis(1,3,3-trimethyl-1-phenyl-3-vinylsiloxanyldi)amine

1H NMR (400 MHz, CDCl$_3$) δ 7.70 – 7.30 (m, 10H), 6.16 (dd, J = 20.3, 14.9 Hz, 2H), 5.97 (dd, J = 14.8, 3.9 Hz, 2H), 5.78 (dd, J = 20.3, 3.9 Hz, 2H), 0.37 (s, 6H), 0.21 (s, 12H). 13C NMR (126 MHz, CDCl$_3$) δ 138.91, 133.35, 132.21, 129.92, 127.81, 0.26, -0.95. 29Si NMR (79 MHz, CDCl$_3$) δ -2.42, -24.33. HRMS (ESI) m/z: calcd. for C$_{22}$H$_{36}$NO$_2$Si$_4$ [M + H]$^+$: 458.18176; found: 458.1812.

1H NMR (400 MHz, Acetone-d_6) δ 7.79 – 6.92 (m, 20H), 1.30 (s, 1H), 0.23 – -0.15 (m, 48H). 13C NMR (126 MHz, CDCl$_3$) δ 136.83, 136.52, 134.99, 134.57, 129.28, 127.33, 1.07. 29Si NMR (79 MHz, CDCl$_3$) δ -21.97, -31.70, -34.14.
3. Copies of NMR and MALDI-TOF Spectra of Siloxazanes

1H NMR

13C NMR
29Si NMR

High-resolution MALDI-TOF-MS
m/z: for [M+H]$^+$ = 1025.329200
1H NMR

13C NMR
High-resolution MALDI-TOF-MS
m/z: for [M + Na]$^+$ = 959.333974

1H NMR
13C NMR

High-resolution MALDI-TOF-MS

m/z: for [M + H]$^+$ = 1432.538936
1H NMR

13C NMR
29Si NMR

High-resolution MALDI-TOF-MS

m/z: for [M + H]$^+$ = 630.213671
1H NMR

1C NMR
High-resolution MALDI-TOF-MS
m/z: for [M + H]^+ = 1037.423871

^1^H NMR
13C NMR

29Si NMR
High-resolution MALDI-TOF-MS

m/z: for [M + H]$^+$ = 582.213002

1H NMR
$^{13}\text{C} \text{ NMR}$

$^{29}\text{Si} \text{ NMR}$
High-resolution MALDI-TOF-MS
m/z: for [M + H]$^+$ = 977.32969

1H NMR

![NMR Spectrogram]
High-resolution MALDI-TOF-MS

m/z: for [M + H]$^+$ = 682.244418

1H NMR
13C NMR

29Si NMR
High-resolution MALDI-TOF-MS

m/z: for [M + H]$^+$ = 1077.361040

1H NMR
High-resolution ESI-MS

m/z: for [M + H]^+ = 458.18121

\[C_{20}H_{30}O_2N_4S_4 \] = 458.18176

-1.19713 ppm

\[19F \text{NMR} \]

-135.1C
-155.15
-163.00
Tris(pentafluorophenyl)borane in toluene-d₈.

Solution of 1a and tris(pentafluorophenyl)borane (0.5 equiv.) in toluene-d₈.

Solution of 1b and tris(pentafluorophenyl)borane (0.5 equiv.) in toluene-d₈.
4. Copies of NMR and Gel Permeation Chromatography (GPC) Charts of Polymers

1H NMR

13C NMR
29Si NMR

Gel Permeation Chromatography (GPC) Charts of Polymers

<table>
<thead>
<tr>
<th>Distribution Name</th>
<th>Mn (Daltons)</th>
<th>Mw (Daltons)</th>
<th>MP (Daltons)</th>
<th>Mz (Daltons)</th>
<th>Mz+1 (Daltons)</th>
<th>Polymersality</th>
<th>Mz/Mw</th>
<th>Mz+1/Mw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18051</td>
<td>44851</td>
<td>52797</td>
<td>75407</td>
<td>108216</td>
<td>2.47358</td>
<td>1.88886</td>
<td>2.42903</td>
</tr>
</tbody>
</table>

(Entry 8, Table 2)
5. X-ray Crystallographic Details

Crystallographic data for 4a:

Table1. Crystallographic data and refinement parameters for 4a (see Figure 1 for structure).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>TX360</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{60}H_{72}N_{2}O_{3}Si_{6}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1037.73</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>169.99(10)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.76140(10)</td>
</tr>
<tr>
<td>b/Å</td>
<td>13.3279(2)</td>
</tr>
<tr>
<td>c/Å</td>
<td>22.9045(3)</td>
</tr>
<tr>
<td>α/°</td>
<td>97.1130(10)</td>
</tr>
<tr>
<td>β/°</td>
<td>100.5090(10)</td>
</tr>
<tr>
<td>γ/°</td>
<td>97.9270(10)</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>2867.71(7)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>ρ calc/cm³</td>
<td>1.202</td>
</tr>
<tr>
<td>μ/mm⁻¹</td>
<td>1.710</td>
</tr>
<tr>
<td>F(000)</td>
<td>1108.0</td>
</tr>
<tr>
<td>Crystal size/mm³</td>
<td>0.311 × 0.267 × 0.223</td>
</tr>
<tr>
<td>Radiation</td>
<td>CuKα (λ = 1.54184)</td>
</tr>
<tr>
<td>2θ range for data collection/°</td>
<td>6.776 to 150.71</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12 ≤ h ≤ 12, -16 ≤ k ≤ 16, -28 ≤ l ≤ 25</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>34331</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11438 [R_{int} = 0.0155, R_{sigma} = 0.0141]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>11438/1/665</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.052</td>
</tr>
<tr>
<td>Final R indexes [I>=2σ (I)]</td>
<td>R₁ = 0.0384, wR₂ = 0.1015</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.0409, wR₂ = 0.1031</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.80/-0.47</td>
</tr>
</tbody>
</table>
Table 2. Fractional atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for 4a. U(eq) is defined as one-third of the trace of the orthogonalized Uᵢⱼ tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si1</td>
<td>7137.6(5)</td>
<td>7816.0(3)</td>
<td>3752.2(2)</td>
<td>27.47(10)</td>
</tr>
<tr>
<td>Si2</td>
<td>3851.6(4)</td>
<td>7665.4(3)</td>
<td>3770.0(2)</td>
<td>22.88(9)</td>
</tr>
<tr>
<td>Si3</td>
<td>2744.7(4)</td>
<td>6221.0(3)</td>
<td>2527.5(2)</td>
<td>18.93(9)</td>
</tr>
<tr>
<td>Si4</td>
<td>2638.5(4)</td>
<td>3898.4(3)</td>
<td>2535.9(2)</td>
<td>19.98(9)</td>
</tr>
<tr>
<td>Si5</td>
<td>1233.5(4)</td>
<td>2354.0(3)</td>
<td>1334.5(2)</td>
<td>22.28(9)</td>
</tr>
<tr>
<td>Si6</td>
<td>3903.3(5)</td>
<td>2604.1(3)</td>
<td>738.5(2)</td>
<td>31.05(11)</td>
</tr>
<tr>
<td>O1</td>
<td>5410.9(12)</td>
<td>7629.6(9)</td>
<td>3632.1(5)</td>
<td>29.9(2)</td>
</tr>
<tr>
<td>O2</td>
<td>3262.6(11)</td>
<td>5104.5(8)</td>
<td>2532.9(5)</td>
<td>23.9(2)</td>
</tr>
<tr>
<td>O3</td>
<td>2728.6(12)</td>
<td>2269.6(9)</td>
<td>1136.2(5)</td>
<td>29.3(2)</td>
</tr>
<tr>
<td>N1</td>
<td>7588(3)</td>
<td>9877.1(18)</td>
<td>3510.5(12)</td>
<td>58.1(6)</td>
</tr>
<tr>
<td>N2</td>
<td>7754(2)</td>
<td>8785.7(16)</td>
<td>3296.8(9)</td>
<td>41.2(4)</td>
</tr>
<tr>
<td>C1</td>
<td>9456(2)</td>
<td>8481(2)</td>
<td>4748.3(12)</td>
<td>62.3(7)</td>
</tr>
<tr>
<td>C2</td>
<td>7847(2)</td>
<td>8269.2(16)</td>
<td>4568.8(8)</td>
<td>40.1(4)</td>
</tr>
<tr>
<td>C3</td>
<td>7497(4)</td>
<td>5735(2)</td>
<td>3831.1(15)</td>
<td>82.6(9)</td>
</tr>
<tr>
<td>C4</td>
<td>7737(3)</td>
<td>6593.6(18)</td>
<td>3496.9(11)</td>
<td>55.4(6)</td>
</tr>
<tr>
<td>C5</td>
<td>3356.8(17)</td>
<td>8968.6(12)</td>
<td>3768.2(7)</td>
<td>25.9(3)</td>
</tr>
<tr>
<td>C6</td>
<td>2121.3(18)</td>
<td>9145.4(14)</td>
<td>3409.7(8)</td>
<td>33.8(4)</td>
</tr>
<tr>
<td>C7</td>
<td>1735(2)</td>
<td>10111.4(15)</td>
<td>3439.9(9)</td>
<td>41.3(4)</td>
</tr>
<tr>
<td>C8</td>
<td>2582(2)</td>
<td>10927.3(14)</td>
<td>3832.1(9)</td>
<td>40.0(4)</td>
</tr>
<tr>
<td>C9</td>
<td>3814(2)</td>
<td>10775.1(14)</td>
<td>4190.9(8)</td>
<td>38.1(4)</td>
</tr>
<tr>
<td>C10</td>
<td>4193.9(18)</td>
<td>9812.4(13)</td>
<td>4158.4(8)</td>
<td>32.0(3)</td>
</tr>
<tr>
<td>C11</td>
<td>3792.5(16)</td>
<td>7304.4(12)</td>
<td>4530.9(7)</td>
<td>26.5(3)</td>
</tr>
<tr>
<td>C12</td>
<td>2937.1(19)</td>
<td>7732.0(16)</td>
<td>4886.9(8)</td>
<td>37.5(4)</td>
</tr>
<tr>
<td>C13</td>
<td>2897(2)</td>
<td>7477.8(17)</td>
<td>5454.5(9)</td>
<td>45.8(5)</td>
</tr>
<tr>
<td>C14</td>
<td>3711(2)</td>
<td>6789.2(15)</td>
<td>5676.9(8)</td>
<td>44.9(5)</td>
</tr>
<tr>
<td>C15</td>
<td>4570(2)</td>
<td>6357.1(15)</td>
<td>5335.7(8)</td>
<td>44.1(5)</td>
</tr>
<tr>
<td>C16</td>
<td>4606(2)</td>
<td>6611.3(13)</td>
<td>4767.1(8)</td>
<td>34.4(4)</td>
</tr>
<tr>
<td>C17</td>
<td>3966.2(15)</td>
<td>7064.0(11)</td>
<td>2188.4(6)</td>
<td>21.8(3)</td>
</tr>
<tr>
<td>C18</td>
<td>3781.5(18)</td>
<td>8082.3(12)</td>
<td>2173.3(7)</td>
<td>28.2(3)</td>
</tr>
<tr>
<td>C19</td>
<td>4564.6(19)</td>
<td>8717.6(13)</td>
<td>1875.5(8)</td>
<td>32.9(4)</td>
</tr>
<tr>
<td>C20</td>
<td>5559.5(18)</td>
<td>8347.6(13)</td>
<td>1586.0(8)</td>
<td>33.3(4)</td>
</tr>
<tr>
<td>C21</td>
<td>5784.4(19)</td>
<td>7352.4(15)</td>
<td>1605.7(8)</td>
<td>36.2(4)</td>
</tr>
<tr>
<td>C22</td>
<td>4991.9(18)</td>
<td>6712.6(13)</td>
<td>1902.1(7)</td>
<td>29.4(3)</td>
</tr>
<tr>
<td>C23</td>
<td>921.7(16)</td>
<td>6008.7(11)</td>
<td>2049.7(7)</td>
<td>23.5(3)</td>
</tr>
<tr>
<td>C24</td>
<td>-247.4(17)</td>
<td>5503.0(14)</td>
<td>2231.3(8)</td>
<td>32.8(4)</td>
</tr>
<tr>
<td>C27</td>
<td>-1581.7(19)</td>
<td>5314.1(16)</td>
<td>1862.4(10)</td>
<td>42.4(4)</td>
</tr>
<tr>
<td>C28</td>
<td>-1778.0(19)</td>
<td>5641.4(15)</td>
<td>1308.1(9)</td>
<td>41.4(4)</td>
</tr>
<tr>
<td>C29</td>
<td>-653(2)</td>
<td>6151.2(14)</td>
<td>1120.9(9)</td>
<td>39.5(4)</td>
</tr>
<tr>
<td>C30</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C31</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C32</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C33</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C34</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C35</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C36</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C37</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C38</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C39</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C40</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C41</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C42</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C43</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C44</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C45</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C46</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C47</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C48</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C49</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C50</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C51</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C52</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C53</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C54</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C55</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C56</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C57</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
<tr>
<td>C58</td>
<td>686.6(18)</td>
<td>6328.6(13)</td>
<td>1487.8(7)</td>
<td>30.7(3)</td>
</tr>
<tr>
<td>C59</td>
<td>1792.0(16)</td>
<td>3831.0(11)</td>
<td>3204.5(7)</td>
<td>23.7(3)</td>
</tr>
<tr>
<td>C60</td>
<td>76(2)</td>
<td>3062.6(16)</td>
<td>3205.4(8)</td>
<td>40.8(4)</td>
</tr>
<tr>
<td>C60A</td>
<td>571(2)</td>
<td>3707.0(17)</td>
<td>4220.4(8)</td>
<td>45.0(5)</td>
</tr>
</tbody>
</table>
Table 3. Anisotropic Displacement Parameters (Å²×10³) for 4a. The Anisotropic displacement factor exponent takes the form: -2π²[h²U₁₁+2hka*b*U₁₂+…].

<table>
<thead>
<tr>
<th>Atom</th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₂</th>
<th>U₂₃</th>
<th>U₃₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si1</td>
<td>25.8(2)</td>
<td>30.6(2)</td>
<td>26.4(2)</td>
<td>3.38(17)</td>
<td>5.01(17)</td>
<td>7.50(17)</td>
</tr>
<tr>
<td>Si2</td>
<td>24.3(2)</td>
<td>25.0(2)</td>
<td>17.10(19)</td>
<td>1.21(15)</td>
<td>3.12(15)</td>
<td>-0.60(15)</td>
</tr>
<tr>
<td>Si3</td>
<td>20.95(19)</td>
<td>17.82(18)</td>
<td>16.93(18)</td>
<td>3.03(14)</td>
<td>2.45(14)</td>
<td>1.03(14)</td>
</tr>
<tr>
<td>Si4</td>
<td>22.83(19)</td>
<td>18.03(18)</td>
<td>18.32(18)</td>
<td>3.29(14)</td>
<td>2.22(14)</td>
<td>2.89(14)</td>
</tr>
<tr>
<td>Si5</td>
<td>25.1(2)</td>
<td>19.94(19)</td>
<td>20.34(19)</td>
<td>0.75(15)</td>
<td>2.59(15)</td>
<td>3.39(15)</td>
</tr>
<tr>
<td>Si6</td>
<td>41.1(3)</td>
<td>28.5(2)</td>
<td>23.7(2)</td>
<td>4.54(17)</td>
<td>9.76(18)</td>
<td>1.36(18)</td>
</tr>
<tr>
<td>O1</td>
<td>27.7(6)</td>
<td>37.0(6)</td>
<td>24.7(5)</td>
<td>5.6(5)</td>
<td>6.0(4)</td>
<td>2.2(5)</td>
</tr>
<tr>
<td>O2</td>
<td>30.6(6)</td>
<td>19.5(5)</td>
<td>23.7(6)</td>
<td>5.1(4)</td>
<td>2.1(4)</td>
<td>2.0(4)</td>
</tr>
<tr>
<td>O3</td>
<td>30.6(6)</td>
<td>17.82(18)</td>
<td>27.8(6)</td>
<td>3.2(4)</td>
<td>8.0(5)</td>
<td>6.5(5)</td>
</tr>
<tr>
<td>N1</td>
<td>25.7(7)</td>
<td>29.6(7)</td>
<td>21.7(6)</td>
<td>-0.3(5)</td>
<td>7.5(5)</td>
<td>-4.3(5)</td>
</tr>
<tr>
<td>N2</td>
<td>24.0(6)</td>
<td>23.8(6)</td>
<td>23.7(6)</td>
<td>0.6(5)</td>
<td>1.0(5)</td>
<td>6.7(5)</td>
</tr>
<tr>
<td>C1</td>
<td>69.2(15)</td>
<td>49.0(12)</td>
<td>66.8(15)</td>
<td>27.7(11)</td>
<td>25.8(12)</td>
<td>13.6(11)</td>
</tr>
<tr>
<td>C2</td>
<td>35.0(9)</td>
<td>51.0(11)</td>
<td>38.2(10)</td>
<td>9.6(8)</td>
<td>12.9(8)</td>
<td>-0.7(8)</td>
</tr>
<tr>
<td>C3</td>
<td>41.2(12)</td>
<td>72.6(16)</td>
<td>60.6(14)</td>
<td>15.0(12)</td>
<td>-15.9(10)</td>
<td>-3.0(11)</td>
</tr>
<tr>
<td>C4</td>
<td>37.4(10)</td>
<td>47.9(11)</td>
<td>31.6(9)</td>
<td>5.0(8)</td>
<td>-0.7(7)</td>
<td>6.6(8)</td>
</tr>
<tr>
<td>C5</td>
<td>124(3)</td>
<td>50.3(15)</td>
<td>81(2)</td>
<td>9.6(14)</td>
<td>25.8(19)</td>
<td>33.5(16)</td>
</tr>
<tr>
<td>C6</td>
<td>87.6(15)</td>
<td>51.5(13)</td>
<td>51.2(12)</td>
<td>1.3(10)</td>
<td>11.1(11)</td>
<td>30.6(11)</td>
</tr>
<tr>
<td>C7</td>
<td>27.5(8)</td>
<td>28.9(8)</td>
<td>19.7(7)</td>
<td>1.8(6)</td>
<td>5.0(6)</td>
<td>1.0(6)</td>
</tr>
<tr>
<td>C8</td>
<td>32.4(9)</td>
<td>35.0(9)</td>
<td>29.2(8)</td>
<td>-1.6(7)</td>
<td>-0.2(7)</td>
<td>3.9(7)</td>
</tr>
<tr>
<td>C9</td>
<td>40.7(10)</td>
<td>43.2(10)</td>
<td>38.6(10)</td>
<td>4.8(8)</td>
<td>-0.2(8)</td>
<td>13.9(8)</td>
</tr>
<tr>
<td>C10</td>
<td>51.0(11)</td>
<td>40.6(10)</td>
<td>5.1(7)</td>
<td>11.7(8)</td>
<td>11.4(8)</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>42.5(10)</td>
<td>29.7(9)</td>
<td>37.7(9)</td>
<td>-3.4(7)</td>
<td>7.3(8)</td>
<td>-0.8(7)</td>
</tr>
<tr>
<td>C12</td>
<td>30.6(8)</td>
<td>32.2(8)</td>
<td>28.9(8)</td>
<td>-1.2(7)</td>
<td>1.4(7)</td>
<td>1.2(7)</td>
</tr>
<tr>
<td>C13</td>
<td>26.7(8)</td>
<td>28.6(8)</td>
<td>19.8(7)</td>
<td>0.6(6)</td>
<td>2.3(6)</td>
<td>-4.3(6)</td>
</tr>
<tr>
<td>C14</td>
<td>30.8(9)</td>
<td>53.5(11)</td>
<td>30.5(9)</td>
<td>9.7(8)</td>
<td>10.2(7)</td>
<td>6.4(8)</td>
</tr>
<tr>
<td>C15</td>
<td>47.0(11)</td>
<td>60.2(13)</td>
<td>33.0(10)</td>
<td>7.2(9)</td>
<td>20.8(8)</td>
<td>1.7(9)</td>
</tr>
<tr>
<td>C16</td>
<td>63.8(13)</td>
<td>44.6(11)</td>
<td>23.3(8)</td>
<td>8.0(7)</td>
<td>12.1(8)</td>
<td>-8.6(9)</td>
</tr>
<tr>
<td>C17</td>
<td>68.0(13)</td>
<td>33.4(9)</td>
<td>30.3(9)</td>
<td>11.2(7)</td>
<td>6.7(9)</td>
<td>5.4(9)</td>
</tr>
<tr>
<td>C18</td>
<td>49.8(10)</td>
<td>27.0(8)</td>
<td>26.7(8)</td>
<td>3.4(6)</td>
<td>11.2(7)</td>
<td>3.3(7)</td>
</tr>
<tr>
<td>C19</td>
<td>22.9(7)</td>
<td>22.3(7)</td>
<td>18.7(7)</td>
<td>3.4(5)</td>
<td>1.6(5)</td>
<td>1.4(5)</td>
</tr>
<tr>
<td>C20</td>
<td>33.1(8)</td>
<td>25.0(8)</td>
<td>29.6(8)</td>
<td>6.9(6)</td>
<td>11.5(7)</td>
<td>6.7(6)</td>
</tr>
<tr>
<td>C21</td>
<td>43.4(10)</td>
<td>22.6(8)</td>
<td>32.4(9)</td>
<td>8.0(6)</td>
<td>8.0(7)</td>
<td>1.2(7)</td>
</tr>
<tr>
<td>C22</td>
<td>34.1(9)</td>
<td>35.2(9)</td>
<td>29.3(8)</td>
<td>9.2(7)</td>
<td>8.6(7)</td>
<td>-6.1(7)</td>
</tr>
<tr>
<td>C23</td>
<td>34.8(9)</td>
<td>43.0(10)</td>
<td>36.9(9)</td>
<td>8.4(8)</td>
<td>17.8(7)</td>
<td>7.6(7)</td>
</tr>
<tr>
<td>C24</td>
<td>33.3(8)</td>
<td>27.5(8)</td>
<td>29.6(8)</td>
<td>5.6(6)</td>
<td>10.2(7)</td>
<td>6.7(6)</td>
</tr>
<tr>
<td>C25</td>
<td>24.8(7)</td>
<td>21.1(7)</td>
<td>23.3(7)</td>
<td>1.1(5)</td>
<td>2.3(6)</td>
<td>4.7(6)</td>
</tr>
<tr>
<td>C26</td>
<td>26.2(8)</td>
<td>39.0(9)</td>
<td>33.6(9)</td>
<td>7.7(7)</td>
<td>6.3(7)</td>
<td>4.6(7)</td>
</tr>
<tr>
<td>C27</td>
<td>23.4(8)</td>
<td>48.6(11)</td>
<td>53.0(12)</td>
<td>3.9(9)</td>
<td>7.1(8)</td>
<td>2.3(7)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C28</td>
<td>26.5(9)</td>
<td>41.7(10)</td>
<td>48.1(11)</td>
<td>-2.1(8)</td>
<td>-9.3(8)</td>
<td>8.7(7)</td>
</tr>
<tr>
<td>C29</td>
<td>40.6(10)</td>
<td>38.6(10)</td>
<td>34.2(9)</td>
<td>6.8(7)</td>
<td>-8.7(8)</td>
<td>10.1(8)</td>
</tr>
<tr>
<td>C30</td>
<td>31.8(8)</td>
<td>29.5(8)</td>
<td>27.9(8)</td>
<td>6.8(6)</td>
<td>-1.1(6)</td>
<td>2.5(6)</td>
</tr>
<tr>
<td>C31</td>
<td>26.1(7)</td>
<td>23.7(7)</td>
<td>21.2(7)</td>
<td>5.4(6)</td>
<td>2.8(6)</td>
<td>4.9(6)</td>
</tr>
<tr>
<td>C32</td>
<td>36.8(10)</td>
<td>50.1(11)</td>
<td>28.7(9)</td>
<td>-4.0(8)</td>
<td>9.6(7)</td>
<td>-11.3(8)</td>
</tr>
<tr>
<td>C33</td>
<td>42.4(11)</td>
<td>76.8(16)</td>
<td>36.3(10)</td>
<td>-1.0(10)</td>
<td>15.7(9)</td>
<td>-20.6(10)</td>
</tr>
<tr>
<td>C34</td>
<td>46.4(11)</td>
<td>62.8(13)</td>
<td>27.0(9)</td>
<td>6.7(8)</td>
<td>14.9(8)</td>
<td>3.5(9)</td>
</tr>
<tr>
<td>C35</td>
<td>72.5(14)</td>
<td>46.0(11)</td>
<td>22.0(8)</td>
<td>-0.3(8)</td>
<td>11.4(9)</td>
<td>-5.2(10)</td>
</tr>
<tr>
<td>C36</td>
<td>56.0(11)</td>
<td>33.2(9)</td>
<td>23.2(8)</td>
<td>3.7(7)</td>
<td>6.7(8)</td>
<td>-10.9(8)</td>
</tr>
<tr>
<td>C37</td>
<td>29.4(8)</td>
<td>24.9(7)</td>
<td>17.8(7)</td>
<td>3.8(5)</td>
<td>2.0(6)</td>
<td>7.6(6)</td>
</tr>
<tr>
<td>C38</td>
<td>30.7(8)</td>
<td>35.2(9)</td>
<td>30.9(8)</td>
<td>11.4(7)</td>
<td>8.9(7)</td>
<td>9.5(7)</td>
</tr>
<tr>
<td>C39</td>
<td>33.3(9)</td>
<td>56.0(12)</td>
<td>42.5(10)</td>
<td>17.6(9)</td>
<td>12.1(8)</td>
<td>17.4(8)</td>
</tr>
<tr>
<td>C40</td>
<td>45.4(11)</td>
<td>52.7(11)</td>
<td>34.4(9)</td>
<td>8.0(8)</td>
<td>6.1(8)</td>
<td>30.5(9)</td>
</tr>
<tr>
<td>C41</td>
<td>54.3(12)</td>
<td>29.7(9)</td>
<td>37.7(10)</td>
<td>3.8(7)</td>
<td>-3.1(8)</td>
<td>18.9(8)</td>
</tr>
<tr>
<td>C42</td>
<td>37.9(9)</td>
<td>25.8(8)</td>
<td>34.8(9)</td>
<td>6.0(7)</td>
<td>-1.6(7)</td>
<td>5.9(7)</td>
</tr>
<tr>
<td>C43</td>
<td>29.1(8)</td>
<td>23.7(7)</td>
<td>24.1(7)</td>
<td>2.2(6)</td>
<td>0.0(6)</td>
<td>1.5(6)</td>
</tr>
<tr>
<td>C44</td>
<td>33.6(9)</td>
<td>27.2(8)</td>
<td>49.1(11)</td>
<td>9.1(7)</td>
<td>6.4(8)</td>
<td>6.2(7)</td>
</tr>
<tr>
<td>C45</td>
<td>45.6(11)</td>
<td>28.4(9)</td>
<td>62.1(13)</td>
<td>13.5(9)</td>
<td>-2.2(9)</td>
<td>7.4(8)</td>
</tr>
<tr>
<td>C46</td>
<td>50.8(11)</td>
<td>32.4(9)</td>
<td>41.7(10)</td>
<td>15.3(8)</td>
<td>-5.2(9)</td>
<td>-9.7(8)</td>
</tr>
<tr>
<td>C47</td>
<td>43.8(10)</td>
<td>42.0(10)</td>
<td>29.7(9)</td>
<td>4.0(7)</td>
<td>6.6(8)</td>
<td>-11.6(8)</td>
</tr>
<tr>
<td>C48</td>
<td>35.9(9)</td>
<td>31.2(8)</td>
<td>28.7(8)</td>
<td>-1.1(7)</td>
<td>5.5(7)</td>
<td>-1.2(7)</td>
</tr>
<tr>
<td>C49</td>
<td>27.8(8)</td>
<td>27.8(8)</td>
<td>21.1(7)</td>
<td>0.5(6)</td>
<td>3.1(6)</td>
<td>4.3(6)</td>
</tr>
<tr>
<td>C50</td>
<td>42.4(10)</td>
<td>29.9(8)</td>
<td>31.7(9)</td>
<td>-1.2(7)</td>
<td>-2.2(7)</td>
<td>3.3(7)</td>
</tr>
<tr>
<td>C51</td>
<td>42.7(10)</td>
<td>45.2(11)</td>
<td>27.8(9)</td>
<td>-4.1(8)</td>
<td>-5.5(8)</td>
<td>-1.7(8)</td>
</tr>
<tr>
<td>C52</td>
<td>37.4(10)</td>
<td>56.3(12)</td>
<td>24.4(8)</td>
<td>7.7(8)</td>
<td>-1.8(7)</td>
<td>8.0(8)</td>
</tr>
<tr>
<td>C53</td>
<td>53.7(12)</td>
<td>39.2(10)</td>
<td>39.2(10)</td>
<td>10.6(8)</td>
<td>-5.8(9)</td>
<td>11.9(9)</td>
</tr>
<tr>
<td>C54</td>
<td>42.3(10)</td>
<td>28.5(8)</td>
<td>32.0(9)</td>
<td>1.8(7)</td>
<td>-4.7(7)</td>
<td>3.9(7)</td>
</tr>
<tr>
<td>C55</td>
<td>83.4(16)</td>
<td>46.1(11)</td>
<td>24.2(9)</td>
<td>7.2(8)</td>
<td>7.8(9)</td>
<td>6.2(11)</td>
</tr>
<tr>
<td>C56</td>
<td>63.2(14)</td>
<td>50.0(12)</td>
<td>34.3(10)</td>
<td>-10.6(9)</td>
<td>-0.4(9)</td>
<td>7.0(10)</td>
</tr>
<tr>
<td>C57</td>
<td>35.2(10)</td>
<td>67.2(14)</td>
<td>45.6(11)</td>
<td>0.6(10)</td>
<td>15.0(9)</td>
<td>4.6(9)</td>
</tr>
<tr>
<td>C58</td>
<td>55.1(15)</td>
<td>68.3(17)</td>
<td>93(2)</td>
<td>24.0(15)</td>
<td>-0.9(14)</td>
<td>23.4(13)</td>
</tr>
<tr>
<td>C59</td>
<td>112(2)</td>
<td>40.6(12)</td>
<td>47.9(13)</td>
<td>6.9(10)</td>
<td>8.8(14)</td>
<td>-17.5(13)</td>
</tr>
<tr>
<td>C60</td>
<td>81(3)</td>
<td>35.4(16)</td>
<td>78(3)</td>
<td>7.2(16)</td>
<td>-21(2)</td>
<td>6.4(16)</td>
</tr>
<tr>
<td>C60A</td>
<td>60(5)</td>
<td>42(4)</td>
<td>49(4)</td>
<td>22(3)</td>
<td>-3(4)</td>
<td>-12(3)</td>
</tr>
</tbody>
</table>
Table 4. Bond lengths [Å] and angles [°] for 4a

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si1</td>
<td>O1</td>
<td>1.6361(12)</td>
<td>C19</td>
<td>C24</td>
<td>1.395(2)</td>
</tr>
<tr>
<td>Si1</td>
<td>C2</td>
<td>1.8625(19)</td>
<td>C20</td>
<td>C21</td>
<td>1.386(2)</td>
</tr>
<tr>
<td>Si1</td>
<td>C4</td>
<td>1.8641(19)</td>
<td>C21</td>
<td>C22</td>
<td>1.383(3)</td>
</tr>
<tr>
<td>Si1</td>
<td>C6</td>
<td>1.868(2)</td>
<td>C22</td>
<td>C23</td>
<td>1.379(3)</td>
</tr>
<tr>
<td>Si2</td>
<td>O1</td>
<td>1.6158(12)</td>
<td>C23</td>
<td>C24</td>
<td>1.393(2)</td>
</tr>
<tr>
<td>Si2</td>
<td>N1</td>
<td>1.7188(14)</td>
<td>C25</td>
<td>C26</td>
<td>1.400(2)</td>
</tr>
<tr>
<td>Si2</td>
<td>C7</td>
<td>1.8663(17)</td>
<td>C25</td>
<td>C30</td>
<td>1.395(2)</td>
</tr>
<tr>
<td>Si2</td>
<td>C13</td>
<td>1.8731(16)</td>
<td>C26</td>
<td>C27</td>
<td>1.389(2)</td>
</tr>
<tr>
<td>Si3</td>
<td>O2</td>
<td>1.6370(11)</td>
<td>C27</td>
<td>C28</td>
<td>1.382(3)</td>
</tr>
<tr>
<td>Si3</td>
<td>N1</td>
<td>1.7101(14)</td>
<td>C28</td>
<td>C29</td>
<td>1.374(3)</td>
</tr>
<tr>
<td>Si3</td>
<td>C19</td>
<td>1.8633(15)</td>
<td>C29</td>
<td>C30</td>
<td>1.392(2)</td>
</tr>
<tr>
<td>Si3</td>
<td>C25</td>
<td>1.8758(15)</td>
<td>C30</td>
<td>C31</td>
<td>1.392(2)</td>
</tr>
<tr>
<td>Si4</td>
<td>O2</td>
<td>1.6398(10)</td>
<td>C31</td>
<td>C36</td>
<td>1.393(2)</td>
</tr>
<tr>
<td>Si4</td>
<td>N2</td>
<td>1.7164(13)</td>
<td>C31</td>
<td>C36</td>
<td>1.393(2)</td>
</tr>
<tr>
<td>Si4</td>
<td>C31</td>
<td>1.8738(16)</td>
<td>C32</td>
<td>C33</td>
<td>1.389(3)</td>
</tr>
<tr>
<td>Si4</td>
<td>C37</td>
<td>1.8617(16)</td>
<td>C33</td>
<td>C34</td>
<td>1.379(3)</td>
</tr>
<tr>
<td>Si5</td>
<td>O3</td>
<td>1.6197(12)</td>
<td>C34</td>
<td>C35</td>
<td>1.372(3)</td>
</tr>
<tr>
<td>Si5</td>
<td>N2</td>
<td>1.7186(13)</td>
<td>C35</td>
<td>C36</td>
<td>1.389(3)</td>
</tr>
<tr>
<td>Si5</td>
<td>C43</td>
<td>1.8721(16)</td>
<td>C36</td>
<td>C37</td>
<td>1.394(2)</td>
</tr>
<tr>
<td>Si5</td>
<td>C49</td>
<td>1.8759(16)</td>
<td>C37</td>
<td>C42</td>
<td>1.400(2)</td>
</tr>
<tr>
<td>Si6</td>
<td>O3</td>
<td>1.6383(12)</td>
<td>C39</td>
<td>C40</td>
<td>1.377(3)</td>
</tr>
<tr>
<td>Si6</td>
<td>C55</td>
<td>1.861(2)</td>
<td>C40</td>
<td>C41</td>
<td>1.380(3)</td>
</tr>
<tr>
<td>Si6</td>
<td>C57</td>
<td>1.863(2)</td>
<td>C41</td>
<td>C42</td>
<td>1.389(3)</td>
</tr>
<tr>
<td>Si6</td>
<td>C59</td>
<td>1.866(2)</td>
<td>C43</td>
<td>C44</td>
<td>1.394(2)</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>1.517(3)</td>
<td>C43</td>
<td>C48</td>
<td>1.399(2)</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>1.526(3)</td>
<td>C44</td>
<td>C45</td>
<td>1.392(3)</td>
</tr>
<tr>
<td>C5</td>
<td>C6</td>
<td>1.469(4)</td>
<td>C45</td>
<td>C46</td>
<td>1.373(3)</td>
</tr>
<tr>
<td>C7</td>
<td>C8</td>
<td>1.396(2)</td>
<td>C46</td>
<td>C47</td>
<td>1.381(3)</td>
</tr>
<tr>
<td>C7</td>
<td>C12</td>
<td>1.401(2)</td>
<td>C47</td>
<td>C48</td>
<td>1.390(3)</td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>1.388(3)</td>
<td>C49</td>
<td>C50</td>
<td>1.399(2)</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>1.383(3)</td>
<td>C49</td>
<td>C54</td>
<td>1.389(2)</td>
</tr>
<tr>
<td>C10</td>
<td>C11</td>
<td>1.382(3)</td>
<td>C50</td>
<td>C51</td>
<td>1.386(3)</td>
</tr>
<tr>
<td>C11</td>
<td>C12</td>
<td>1.381(3)</td>
<td>C51</td>
<td>C52</td>
<td>1.372(3)</td>
</tr>
<tr>
<td>C13</td>
<td>C14</td>
<td>1.397(2)</td>
<td>C52</td>
<td>C53</td>
<td>1.382(3)</td>
</tr>
<tr>
<td>C13</td>
<td>C18</td>
<td>1.395(2)</td>
<td>C53</td>
<td>C54</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>C14</td>
<td>C15</td>
<td>1.389(3)</td>
<td>C55</td>
<td>C56</td>
<td>1.515(3)</td>
</tr>
<tr>
<td>C15</td>
<td>C16</td>
<td>1.379(3)</td>
<td>C57</td>
<td>C58</td>
<td>1.494(4)</td>
</tr>
<tr>
<td>C16</td>
<td>C17</td>
<td>1.381(3)</td>
<td>C59</td>
<td>C60</td>
<td>1.404(5)</td>
</tr>
</tbody>
</table>
Table 5. Bond Angles for 4a.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>Si1</td>
<td>C2</td>
<td>109.28(8)</td>
<td>C16</td>
<td>C15</td>
<td>C14</td>
<td>120.05(18)</td>
</tr>
<tr>
<td>O1</td>
<td>Si1</td>
<td>C4</td>
<td>108.74(8)</td>
<td>C15</td>
<td>C16</td>
<td>C17</td>
<td>119.87(17)</td>
</tr>
<tr>
<td>O1</td>
<td>Si1</td>
<td>C6</td>
<td>109.15(10)</td>
<td>C16</td>
<td>C17</td>
<td>C18</td>
<td>120.00(19)</td>
</tr>
<tr>
<td>C2</td>
<td>Si1</td>
<td>C4</td>
<td>110.61(9)</td>
<td>C17</td>
<td>C18</td>
<td>C13</td>
<td>121.32(17)</td>
</tr>
<tr>
<td>C2</td>
<td>Si1</td>
<td>C6</td>
<td>107.64(10)</td>
<td>C17</td>
<td>C18</td>
<td>C13</td>
<td>121.32(17)</td>
</tr>
<tr>
<td>C4</td>
<td>Si1</td>
<td>C6</td>
<td>111.40(10)</td>
<td>C20</td>
<td>C19</td>
<td>Si3</td>
<td>118.91(11)</td>
</tr>
<tr>
<td>O1</td>
<td>Si2</td>
<td>N1</td>
<td>107.64(7)</td>
<td>C24</td>
<td>C19</td>
<td>Si3</td>
<td>123.37(12)</td>
</tr>
<tr>
<td>O1</td>
<td>Si2</td>
<td>C7</td>
<td>112.28(7)</td>
<td>C21</td>
<td>C20</td>
<td>C19</td>
<td>121.55(15)</td>
</tr>
<tr>
<td>O1</td>
<td>Si2</td>
<td>C13</td>
<td>109.51(7)</td>
<td>C22</td>
<td>C21</td>
<td>C20</td>
<td>119.95(15)</td>
</tr>
<tr>
<td>N1</td>
<td>Si2</td>
<td>C7</td>
<td>109.96(7)</td>
<td>C23</td>
<td>C22</td>
<td>C21</td>
<td>119.62(15)</td>
</tr>
<tr>
<td>N1</td>
<td>Si2</td>
<td>C13</td>
<td>109.88(7)</td>
<td>C22</td>
<td>C23</td>
<td>C24</td>
<td>120.41(16)</td>
</tr>
<tr>
<td>C7</td>
<td>Si2</td>
<td>C13</td>
<td>107.57(7)</td>
<td>C23</td>
<td>C24</td>
<td>C19</td>
<td>120.95(15)</td>
</tr>
<tr>
<td>O2</td>
<td>Si3</td>
<td>N1</td>
<td>112.66(6)</td>
<td>C26</td>
<td>C25</td>
<td>Si3</td>
<td>121.87(12)</td>
</tr>
<tr>
<td>O2</td>
<td>Si3</td>
<td>C19</td>
<td>108.91(6)</td>
<td>C30</td>
<td>C25</td>
<td>Si3</td>
<td>120.83(12)</td>
</tr>
<tr>
<td>O2</td>
<td>Si3</td>
<td>C25</td>
<td>107.71(6)</td>
<td>C30</td>
<td>C25</td>
<td>C26</td>
<td>117.28(15)</td>
</tr>
<tr>
<td>N1</td>
<td>Si3</td>
<td>C19</td>
<td>110.02(7)</td>
<td>C27</td>
<td>C26</td>
<td>C25</td>
<td>121.26(17)</td>
</tr>
<tr>
<td>N1</td>
<td>Si3</td>
<td>C25</td>
<td>108.15(7)</td>
<td>C28</td>
<td>C27</td>
<td>C26</td>
<td>119.98(18)</td>
</tr>
<tr>
<td>C19</td>
<td>Si3</td>
<td>C25</td>
<td>109.32(7)</td>
<td>C29</td>
<td>C28</td>
<td>C27</td>
<td>120.06(16)</td>
</tr>
<tr>
<td>O2</td>
<td>Si4</td>
<td>N2</td>
<td>112.25(6)</td>
<td>C28</td>
<td>C29</td>
<td>C30</td>
<td>119.90(17)</td>
</tr>
<tr>
<td>O2</td>
<td>Si4</td>
<td>C31</td>
<td>107.89(6)</td>
<td>C29</td>
<td>C30</td>
<td>C25</td>
<td>121.51(16)</td>
</tr>
<tr>
<td>O2</td>
<td>Si4</td>
<td>C37</td>
<td>106.90(6)</td>
<td>C32</td>
<td>C31</td>
<td>Si4</td>
<td>121.64(12)</td>
</tr>
<tr>
<td>N2</td>
<td>Si4</td>
<td>C31</td>
<td>109.17(7)</td>
<td>C32</td>
<td>C31</td>
<td>C36</td>
<td>116.70(15)</td>
</tr>
<tr>
<td>N2</td>
<td>Si4</td>
<td>C37</td>
<td>110.14(7)</td>
<td>C36</td>
<td>C31</td>
<td>Si4</td>
<td>121.61(12)</td>
</tr>
<tr>
<td>C37</td>
<td>Si4</td>
<td>C31</td>
<td>110.45(7)</td>
<td>C33</td>
<td>C32</td>
<td>C31</td>
<td>121.52(17)</td>
</tr>
<tr>
<td>O3</td>
<td>Si5</td>
<td>N2</td>
<td>110.79(7)</td>
<td>C34</td>
<td>C33</td>
<td>C32</td>
<td>120.36(19)</td>
</tr>
<tr>
<td>O3</td>
<td>Si5</td>
<td>C43</td>
<td>106.55(7)</td>
<td>C35</td>
<td>C34</td>
<td>C33</td>
<td>119.39(17)</td>
</tr>
<tr>
<td>O3</td>
<td>Si5</td>
<td>C49</td>
<td>112.49(7)</td>
<td>C34</td>
<td>C35</td>
<td>C36</td>
<td>120.05(18)</td>
</tr>
<tr>
<td>N2</td>
<td>Si5</td>
<td>C43</td>
<td>112.75(7)</td>
<td>C35</td>
<td>C36</td>
<td>C31</td>
<td>121.95(17)</td>
</tr>
<tr>
<td>N2</td>
<td>Si5</td>
<td>C49</td>
<td>107.00(7)</td>
<td>C38</td>
<td>C37</td>
<td>Si4</td>
<td>121.86(12)</td>
</tr>
<tr>
<td>C43</td>
<td>Si5</td>
<td>C49</td>
<td>107.29(7)</td>
<td>C38</td>
<td>C37</td>
<td>C42</td>
<td>117.78(15)</td>
</tr>
<tr>
<td>O3</td>
<td>Si6</td>
<td>C55</td>
<td>107.88(9)</td>
<td>C42</td>
<td>C37</td>
<td>Si4</td>
<td>120.30(13)</td>
</tr>
<tr>
<td>O3</td>
<td>Si6</td>
<td>C57</td>
<td>108.62(8)</td>
<td>C39</td>
<td>C38</td>
<td>C37</td>
<td>121.13(17)</td>
</tr>
<tr>
<td>O3</td>
<td>Si6</td>
<td>C59</td>
<td>110.43(11)</td>
<td>C40</td>
<td>C39</td>
<td>C38</td>
<td>120.02(18)</td>
</tr>
<tr>
<td>C55</td>
<td>Si6</td>
<td>C57</td>
<td>113.73(11)</td>
<td>C39</td>
<td>C40</td>
<td>C41</td>
<td>120.04(17)</td>
</tr>
<tr>
<td>C55</td>
<td>Si6</td>
<td>C59</td>
<td>110.34(10)</td>
<td>C40</td>
<td>C41</td>
<td>C42</td>
<td>120.09(17)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for 4a.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1A</td>
<td>8003.94</td>
<td>10329.59</td>
<td>3272.22</td>
<td>87</td>
</tr>
<tr>
<td>H1B</td>
<td>8051.4</td>
<td>10072.34</td>
<td>3924.48</td>
<td>87</td>
</tr>
<tr>
<td>H1C</td>
<td>6601.94</td>
<td>9920.14</td>
<td>3470.09</td>
<td>87</td>
</tr>
<tr>
<td>H2A</td>
<td>8744.27</td>
<td>8771.19</td>
<td>3295.19</td>
<td>49</td>
</tr>
<tr>
<td>H2B</td>
<td>7236.23</td>
<td>8586.94</td>
<td>2885.42</td>
<td>49</td>
</tr>
<tr>
<td>H3A</td>
<td>9823.24</td>
<td>8992.34</td>
<td>4531.36</td>
<td>93</td>
</tr>
<tr>
<td>H3B</td>
<td>9821.19</td>
<td>7861.06</td>
<td>4654.51</td>
<td>93</td>
</tr>
<tr>
<td>H3C</td>
<td>9734.25</td>
<td>8722.89</td>
<td>5171.94</td>
<td>93</td>
</tr>
<tr>
<td>H4A</td>
<td>7489.47</td>
<td>8892.51</td>
<td>4683.93</td>
<td>48</td>
</tr>
<tr>
<td>H4B</td>
<td>7489.44</td>
<td>7756.47</td>
<td>4793.6</td>
<td>48</td>
</tr>
<tr>
<td>H5A</td>
<td>7932.92</td>
<td>5181.59</td>
<td>3680.32</td>
<td>124</td>
</tr>
<tr>
<td>H5B</td>
<td>6500.07</td>
<td>5506.24</td>
<td>3781.54</td>
<td>124</td>
</tr>
<tr>
<td>H5C</td>
<td>7900.38</td>
<td>5955.93</td>
<td>4249.68</td>
<td>124</td>
</tr>
<tr>
<td>H6A</td>
<td>7271.49</td>
<td>6362.76</td>
<td>3080.57</td>
<td>67</td>
</tr>
<tr>
<td>H6B</td>
<td>8741.96</td>
<td>6746.28</td>
<td>3506.59</td>
<td>67</td>
</tr>
<tr>
<td>H8</td>
<td>1543.09</td>
<td>8602.55</td>
<td>3144.29</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H9</td>
<td>906.68</td>
<td>10210.04</td>
<td>3196.5</td>
<td>50</td>
</tr>
<tr>
<td>H10</td>
<td>2324.87</td>
<td>11575.06</td>
<td>3854.25</td>
<td>48</td>
</tr>
<tr>
<td>H11</td>
<td>4387.21</td>
<td>11321.99</td>
<td>4454.8</td>
<td>46</td>
</tr>
<tr>
<td>H12</td>
<td>5027.02</td>
<td>9721.97</td>
<td>4401.82</td>
<td>38</td>
</tr>
<tr>
<td>H14</td>
<td>2382.84</td>
<td>8196.34</td>
<td>4741.06</td>
<td>45</td>
</tr>
<tr>
<td>H15</td>
<td>2322.01</td>
<td>7772.25</td>
<td>5684.62</td>
<td>55</td>
</tr>
<tr>
<td>H16</td>
<td>4387.21</td>
<td>11321.99</td>
<td>4454.8</td>
<td>46</td>
</tr>
<tr>
<td>H17</td>
<td>5027.02</td>
<td>9721.97</td>
<td>4401.82</td>
<td>38</td>
</tr>
<tr>
<td>H18</td>
<td>5184.02</td>
<td>6313.23</td>
<td>4539.88</td>
<td>41</td>
</tr>
<tr>
<td>H20</td>
<td>3117.44</td>
<td>8339.84</td>
<td>2367.65</td>
<td>34</td>
</tr>
<tr>
<td>H21</td>
<td>4421.07</td>
<td>9392.16</td>
<td>1870.42</td>
<td>39</td>
</tr>
<tr>
<td>H22</td>
<td>6074</td>
<td>8767.57</td>
<td>1379.19</td>
<td>40</td>
</tr>
<tr>
<td>H23</td>
<td>6469.45</td>
<td>7106.99</td>
<td>1420</td>
<td>43</td>
</tr>
<tr>
<td>H24</td>
<td>5149.03</td>
<td>6041.24</td>
<td>1909.21</td>
<td>35</td>
</tr>
<tr>
<td>H26</td>
<td>-128.23</td>
<td>5289.37</td>
<td>2606.16</td>
<td>39</td>
</tr>
<tr>
<td>H27</td>
<td>-2342.82</td>
<td>4967.6</td>
<td>1988.28</td>
<td>51</td>
</tr>
<tr>
<td>H28</td>
<td>-2671.91</td>
<td>5516.49</td>
<td>1061.55</td>
<td>50</td>
</tr>
<tr>
<td>H29</td>
<td>-787.2</td>
<td>6377.29</td>
<td>749.6</td>
<td>47</td>
</tr>
<tr>
<td>H30</td>
<td>1442.51</td>
<td>6668.1</td>
<td>1355.34</td>
<td>37</td>
</tr>
<tr>
<td>H32</td>
<td>314.84</td>
<td>2582.88</td>
<td>2861.33</td>
<td>49</td>
</tr>
<tr>
<td>H33</td>
<td>-661.93</td>
<td>2467.79</td>
<td>3699.18</td>
<td>65</td>
</tr>
<tr>
<td>H34</td>
<td>155.18</td>
<td>3671.81</td>
<td>4553.32</td>
<td>54</td>
</tr>
<tr>
<td>H35</td>
<td>2029.79</td>
<td>4946.51</td>
<td>4579.62</td>
<td>58</td>
</tr>
<tr>
<td>H36</td>
<td>3054.45</td>
<td>5034.91</td>
<td>3752.74</td>
<td>47</td>
</tr>
<tr>
<td>H38</td>
<td>5680.48</td>
<td>4375.38</td>
<td>2564.24</td>
<td>37</td>
</tr>
<tr>
<td>H39</td>
<td>7571.69</td>
<td>3495.57</td>
<td>2673.1</td>
<td>50</td>
</tr>
<tr>
<td>H40</td>
<td>7225.68</td>
<td>1784.05</td>
<td>2774.54</td>
<td>51</td>
</tr>
<tr>
<td>H41</td>
<td>4997.74</td>
<td>955.39</td>
<td>2792.44</td>
<td>49</td>
</tr>
<tr>
<td>H42</td>
<td>3098.94</td>
<td>1826.85</td>
<td>2686.05</td>
<td>41</td>
</tr>
<tr>
<td>H44</td>
<td>2064.61</td>
<td>297.56</td>
<td>1287.23</td>
<td>44</td>
</tr>
<tr>
<td>H45</td>
<td>1189.01</td>
<td>-1264.95</td>
<td>1528.71</td>
<td>56</td>
</tr>
<tr>
<td>H46</td>
<td>-756.41</td>
<td>-1430.62</td>
<td>1967.22</td>
<td>53</td>
</tr>
<tr>
<td>H47</td>
<td>-1847.85</td>
<td>-28.2</td>
<td>2163.27</td>
<td>49</td>
</tr>
<tr>
<td>H48</td>
<td>-1021.24</td>
<td>1527.08</td>
<td>1899.95</td>
<td>40</td>
</tr>
<tr>
<td>H50</td>
<td>-860.73</td>
<td>1045.35</td>
<td>374.27</td>
<td>44</td>
</tr>
<tr>
<td>H51</td>
<td>-2572.23</td>
<td>1246.5</td>
<td>-419.16</td>
<td>50</td>
</tr>
<tr>
<td>H52</td>
<td>-2965.33</td>
<td>2862.65</td>
<td>-585.4</td>
<td>48</td>
</tr>
<tr>
<td>H53</td>
<td>-1613.82</td>
<td>4285.85</td>
<td>43.9</td>
<td>54</td>
</tr>
<tr>
<td>H54</td>
<td>109.06</td>
<td>4089.93</td>
<td>836.86</td>
<td>44</td>
</tr>
<tr>
<td>H55A</td>
<td>2391.81</td>
<td>2553.57</td>
<td>-194.74</td>
<td>62</td>
</tr>
<tr>
<td>Atom</td>
<td>Occupancy</td>
<td>Atom</td>
<td>Occupancy</td>
<td>Atom</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>H55B</td>
<td>3826.61</td>
<td>H55B</td>
<td>2246.32</td>
<td>-300.17</td>
</tr>
<tr>
<td>H56A</td>
<td>1959.58</td>
<td>H56B</td>
<td>871.32</td>
<td>-635.87</td>
</tr>
<tr>
<td>H56B</td>
<td>1719.24</td>
<td>H56C</td>
<td>889.83</td>
<td>23.43</td>
</tr>
<tr>
<td>H57A</td>
<td>3117.74</td>
<td>H57B</td>
<td>593.46</td>
<td>-139.74</td>
</tr>
<tr>
<td>H57B</td>
<td>6224.16</td>
<td>H57B</td>
<td>2398.26</td>
<td>1423.99</td>
</tr>
<tr>
<td>H58A</td>
<td>5914.17</td>
<td>H58B</td>
<td>609.26</td>
<td>584.9</td>
</tr>
<tr>
<td>H58B</td>
<td>4726.56</td>
<td>H58C</td>
<td>719</td>
<td>1226.74</td>
</tr>
<tr>
<td>H58C</td>
<td>6301.65</td>
<td>H59A</td>
<td>4238.91</td>
<td>1293.55</td>
</tr>
<tr>
<td>H59A</td>
<td>4801.17</td>
<td>H59B</td>
<td>4181.41</td>
<td>665.77</td>
</tr>
<tr>
<td>H59B</td>
<td>5216.97</td>
<td>H59C</td>
<td>4313.04</td>
<td>1086.73</td>
</tr>
<tr>
<td>H59C</td>
<td>3786.99</td>
<td>H59D</td>
<td>4181.11</td>
<td>1130.24</td>
</tr>
<tr>
<td>H59D</td>
<td>5361.76</td>
<td>C60</td>
<td>0.715(6)</td>
<td>H59B</td>
</tr>
<tr>
<td>C60</td>
<td>0.715(6)</td>
<td>H60A</td>
<td>4385.83</td>
<td>275.04</td>
</tr>
<tr>
<td>H60A</td>
<td>2956.92</td>
<td>H60B</td>
<td>5333.13</td>
<td>710.34</td>
</tr>
<tr>
<td>H60B</td>
<td>3890.09</td>
<td>H60C</td>
<td>4619.62</td>
<td>938.34</td>
</tr>
<tr>
<td>H60C</td>
<td>2750.52</td>
<td>H60D</td>
<td>4505.45</td>
<td>212.87</td>
</tr>
<tr>
<td>H60D</td>
<td>5362.96</td>
<td>H60E</td>
<td>5302.47</td>
<td>482.11</td>
</tr>
<tr>
<td>H60E</td>
<td>4516.28</td>
<td>H60F</td>
<td>4322.46</td>
<td>37.59</td>
</tr>
<tr>
<td>H60F</td>
<td>3709.12</td>
<td>C60A</td>
<td>0.715(6)</td>
<td>H60B</td>
</tr>
<tr>
<td>C60A</td>
<td>0.715(6)</td>
<td>H60C</td>
<td>0.715(6)</td>
<td>H60E</td>
</tr>
<tr>
<td>H60C</td>
<td>0.715(6)</td>
<td>H60E</td>
<td>0.715(6)</td>
<td>H60F</td>
</tr>
<tr>
<td>H60E</td>
<td>0.285(6)</td>
<td>H60F</td>
<td>0.285(6)</td>
<td>H60C</td>
</tr>
</tbody>
</table>

Table 7. Atomic Occupancy for 4a
6. Computational Details

All computations were performed using the hybrid density functional method B3LYP as implemented in the Gaussian16 program. For all elements (B, C, H, N, O, Si and F) the allelectron double-ζ basis set (6-31G*) was used.

The optimized structures of the 1a with B(C₆F₅)₃(right), and 1b with B(C₆F₅)₃(left).

Table 8. Cartesian coordinates of optimized ground state structures of 1a, 1b and B(C₆F₅)₃ at B3LYP/6-31G* level, respectively.

<table>
<thead>
<tr>
<th></th>
<th>1a+B(C₆F₅)₃</th>
<th></th>
<th>1b+B(C₆F₅)₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-3.255046</td>
<td>-0.334455</td>
<td>-3.04162</td>
</tr>
<tr>
<td>C</td>
<td>-2.391195</td>
<td>1.174094</td>
<td>0.273185</td>
</tr>
<tr>
<td>C</td>
<td>-2.870544</td>
<td>2.371392</td>
<td>-1.289913</td>
</tr>
<tr>
<td>C</td>
<td>-1.084092</td>
<td>0.828283</td>
<td>-1.842623</td>
</tr>
<tr>
<td>C</td>
<td>-2.123485</td>
<td>3.166717</td>
<td>-1.662835</td>
</tr>
<tr>
<td>C</td>
<td>-0.308917</td>
<td>1.598433</td>
<td>-2.704101</td>
</tr>
<tr>
<td>C</td>
<td>-0.829293</td>
<td>2.778239</td>
<td>-2.51808</td>
</tr>
<tr>
<td>C</td>
<td>-3.119321</td>
<td>-1.287862</td>
<td>-3.039477</td>
</tr>
<tr>
<td>C</td>
<td>-2.977699</td>
<td>-1.952135</td>
<td>-1.660213</td>
</tr>
<tr>
<td>C</td>
<td>-3.074791</td>
<td>-2.108841</td>
<td>-1.598433</td>
</tr>
<tr>
<td>C</td>
<td>-2.798526</td>
<td>-3.325154</td>
<td>-0.702271</td>
</tr>
<tr>
<td>C</td>
<td>-2.871174</td>
<td>-3.481867</td>
<td>-1.762246</td>
</tr>
<tr>
<td>C</td>
<td>-2.732121</td>
<td>-4.091599</td>
<td>-1.842623</td>
</tr>
<tr>
<td>C</td>
<td>-4.222033</td>
<td>0.91903</td>
<td>-2.083405</td>
</tr>
<tr>
<td>C</td>
<td>-3.929931</td>
<td>2.126766</td>
<td>-1.234009</td>
</tr>
<tr>
<td>C</td>
<td>-5.441833</td>
<td>0.323626</td>
<td>1.076154</td>
</tr>
</tbody>
</table>
C -4.769743 2.701719 2.315657 C -0.36706 2.268223 -2.156937
C -6.315169 0.879868 2.002356 C -1.123981 3.453493 -0.200596
C -5.972552 2.074606 2.629671 C -0.307615 3.82571 -1.325768
F -2.779598 2.772903 1.118266 N 2.88095 -1.048198 -0.01754
F -4.435897 3.84557 2.923479 H 2.048723 -1.583054 -0.262201
F -6.793569 2.616732 3.527812 Si 3.253286 0.107156 -1.270911
F -7.474813 0.281047 2.29644 Si 3.470709 -1.538427 1.541457
F -5.831909 -0.825183 0.499283 C 4.174712 -0.110711 2.552114
F -2.779598 4.295174 -3.209729 C 3.379056 0.580913 3.485607
F -0.089759 3.534814 -3.852075 C 6.037359 1.349154 3.16647
F 0.939706 1.218501 -2.833234 H 6.165089 -0.224712 2.416716
F -0.502934 -0.281441 -1.170183 C 3.893294 1.637477 4.239859
F -2.520928 -5.405987 -0.685827 H 2.340006 0.297 3.631047
F -2.665534 -3.913993 -2.956627 C 5.225171 1.634186 3.039769
F -3.026999 -1.5672 1.931553 H 5.628787 2.847406 4.665145
Si 4.490707 1.083401 0.0865 C 5.113459 0.287819 -1.509009
N 3.258173 -0.054998 -0.395944 C 6.006959 -0.780091 -1.300459
H 2.480144 0.353495 -0.909608 C 5.641929 1.494854 -2.006538
Si 3.079884 -1.767768 -0.083769 C 7.37062 -0.645515 -1.573706
C 3.786858 2.811701 -0.211795 C 7.003886 1.634704 -2.279408
C 3.101231 3.137282 -1.398691 H 4.977983 2.338224 -2.182545
C 3.956361 3.83535 0.739073 C 7.871953 0.562428 -2.063026
C 2.59637 4.419499 -1.623083 H 8.04184 -1.484085 -1.4036
H 2.94881 2.381259 -2.164115 H 7.387482 2.578471 -2.659734
C 3.458401 5.12165 0.519462 H 8.933159 0.66766 -2.275529
H 4.479658 3.625411 1.668396 C 2.042468 -2.369022 2.445631
C 2.774546 5.41617 -0.661254 H 1.671775 -3.223799 1.866509
H 2.057167 4.633989 -2.542512 H 2.341056 -2.742017 3.43271
H 3.601122 5.892502 1.272804 H 1.198338 -1.684547 2.592045
H 2.381962 6.415695 -0.830821 O 4.704923 -2.644683 1.286274
C 5.047406 0.850539 1.860317 O 2.614211 1.633339 -1.016312
C 6.412596 0.841858 2.202401 C 2.40812 -0.480718 -2.841165
<table>
<thead>
<tr>
<th>Element</th>
<th>X Position</th>
<th>Y Position</th>
<th>Z Position</th>
<th>X Position</th>
<th>Y Position</th>
<th>Z Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.107992</td>
<td>0.731573</td>
<td>2.901938</td>
<td>H</td>
<td>1.319693</td>
<td>-0.542051</td>
</tr>
<tr>
<td>C</td>
<td>6.823311</td>
<td>0.717074</td>
<td>3.53068</td>
<td>H</td>
<td>2.609676</td>
<td>0.205872</td>
</tr>
<tr>
<td>H</td>
<td>7.157847</td>
<td>0.927796</td>
<td>1.416977</td>
<td>H</td>
<td>2.775686</td>
<td>-1.472297</td>
</tr>
<tr>
<td>C</td>
<td>4.514106</td>
<td>0.60858</td>
<td>4.231858</td>
<td>C</td>
<td>2.904106</td>
<td>2.478813</td>
</tr>
<tr>
<td>H</td>
<td>3.044674</td>
<td>0.72284</td>
<td>2.67515</td>
<td>H</td>
<td>2.55885</td>
<td>3.488028</td>
</tr>
<tr>
<td>C</td>
<td>5.874061</td>
<td>0.601581</td>
<td>4.548264</td>
<td>H</td>
<td>2.381588</td>
<td>2.142878</td>
</tr>
<tr>
<td>H</td>
<td>7.883668</td>
<td>0.70852</td>
<td>3.771418</td>
<td>H</td>
<td>3.978045</td>
<td>2.524908</td>
</tr>
<tr>
<td>H</td>
<td>3.769826</td>
<td>0.511897</td>
<td>5.018233</td>
<td>C</td>
<td>5.346181</td>
<td>-3.358537</td>
</tr>
<tr>
<td>H</td>
<td>6.192649</td>
<td>0.504252</td>
<td>5.83327</td>
<td>H</td>
<td>4.673616</td>
<td>-4.101393</td>
</tr>
<tr>
<td>C</td>
<td>2.091636</td>
<td>-2.494918</td>
<td>-1.518803</td>
<td>H</td>
<td>6.204954</td>
<td>-3.89678</td>
</tr>
<tr>
<td>C</td>
<td>2.108054</td>
<td>-1.92854</td>
<td>-2.807323</td>
<td>H</td>
<td>5.7125</td>
<td>-2.692482</td>
</tr>
<tr>
<td>C</td>
<td>1.321602</td>
<td>-3.659454</td>
<td>-1.331274</td>
<td>H</td>
<td>5.63771</td>
<td>-1.722526</td>
</tr>
<tr>
<td>C</td>
<td>1.38434</td>
<td>-2.492914</td>
<td>-3.860176</td>
<td>F</td>
<td>-4.809294</td>
<td>2.29088</td>
</tr>
<tr>
<td>H</td>
<td>2.688149</td>
<td>-1.027804</td>
<td>-2.991858</td>
<td>F</td>
<td>-7.21865</td>
<td>2.74053</td>
</tr>
<tr>
<td>C</td>
<td>0.593102</td>
<td>-4.22754</td>
<td>-2.377678</td>
<td>F</td>
<td>-8.20303</td>
<td>1.068324</td>
</tr>
<tr>
<td>H</td>
<td>1.279539</td>
<td>-4.123952</td>
<td>-0.348949</td>
<td>F</td>
<td>-6.737284</td>
<td>-1.07814</td>
</tr>
<tr>
<td>C</td>
<td>0.620855</td>
<td>-3.641822</td>
<td>-3.645768</td>
<td>F</td>
<td>-4.332253</td>
<td>-1.562528</td>
</tr>
<tr>
<td>H</td>
<td>1.412018</td>
<td>-2.033306</td>
<td>-4.84525</td>
<td>F</td>
<td>-4.763834</td>
<td>-2.104301</td>
</tr>
<tr>
<td>H</td>
<td>-0.008711</td>
<td>-5.11551</td>
<td>-2.200381</td>
<td>F</td>
<td>-3.972269</td>
<td>-4.613224</td>
</tr>
<tr>
<td>H</td>
<td>0.04731</td>
<td>-4.077208</td>
<td>-4.459912</td>
<td>F</td>
<td>-1.37329</td>
<td>-5.33979</td>
</tr>
<tr>
<td>C</td>
<td>2.214499</td>
<td>-2.171534</td>
<td>1.537666</td>
<td>F</td>
<td>0.434602</td>
<td>-3.499282</td>
</tr>
<tr>
<td>C</td>
<td>2.84574</td>
<td>-2.911878</td>
<td>2.552987</td>
<td>F</td>
<td>-0.328714</td>
<td>-0.986603</td>
</tr>
<tr>
<td>C</td>
<td>0.888858</td>
<td>-1.752318</td>
<td>1.761251</td>
<td>F</td>
<td>-1.236594</td>
<td>0.174463</td>
</tr>
<tr>
<td>C</td>
<td>2.181575</td>
<td>-3.21932</td>
<td>3.742904</td>
<td>F</td>
<td>0.41167</td>
<td>2.197276</td>
</tr>
<tr>
<td>H</td>
<td>3.868831</td>
<td>-3.246391</td>
<td>2.40864</td>
<td>F</td>
<td>0.538751</td>
<td>4.376045</td>
</tr>
<tr>
<td>C</td>
<td>0.217258</td>
<td>-2.062102</td>
<td>2.945119</td>
<td>F</td>
<td>-1.05958</td>
<td>4.521861</td>
</tr>
<tr>
<td>H</td>
<td>0.366293</td>
<td>-1.181163</td>
<td>0.997003</td>
<td>F</td>
<td>-2.751266</td>
<td>2.531574</td>
</tr>
<tr>
<td>C</td>
<td>0.865544</td>
<td>-2.797858</td>
<td>3.940244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.691313</td>
<td>-3.79127</td>
<td>4.51454</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.812862</td>
<td>-1.743428</td>
<td>3.083105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.345169</td>
<td>-3.043446</td>
<td>4.8628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>5.910021</td>
<td>0.8948</td>
<td>-0.78172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.027162</td>
<td>1.101276</td>
<td>-2.181118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.348666</td>
<td>0.448564</td>
<td>-2.747818</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.820594</td>
<td>2.144823</td>
<td>-2.453708</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H 7.055586 0.865628 -2.475434
O 4.569283 -2.48254 0.090298
C 5.558431 -2.609512 -0.925063
H 6.12633 -1.67872 -1.030354
H 6.244866 -3.409922 -0.628238
H 5.118184 -2.876564 -1.895197

7. References