Supplementary Information for:

One-Pot Fluorosulfurylation of Grignard Reagents Using Sulfuryl Fluoride

Cayo Lee,\textsuperscript{a} Nicholas D. Ball \textsuperscript{b} and Glenn M. Sammis \textsuperscript{a}

\textsuperscript{a} Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada

\textsuperscript{b} Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
# Table of Contents

General methods and instrumentation  S3  
Synthesis of Grignard reagents  S3  
Titration of Grignard reagents  S4  
Optimization of sulfonyl fluoride A: addition of SO$_2$F$_2$ to the Grignard reagent  S5  
General procedure A: addition of SO$_2$F$_2$ to the Grignard reagent (Entry 7 in Table S1)  S6  
Determination of conversion in the optimization of sulfonyl fluoride synthesis  S7  
Optimization of sulfonyl fluoride formation B: addition of the Grignard reagent to a SO$_2$F$_2$ solution in THF  S8  
General procedure B: addition of the Grignard reagent to a SO$_2$F$_2$ solution in THF (Entry 5 in Table 2)  S8  
General procedure C: for sulfonyl fluoride formation using Grignard reagent and sulfuryl fluoride on a larger scale  S9  
General procedure D: for one-pot reaction of sulfonyl derivatives using sulfonyl fluoride intermediate  S10  
Experimental data  S10  
References  S22  
$^1$H, $^{13}$C and $^{19}$F NMR Spectra  S23
**General methods and instrumentation**

All chemicals were from commercial sources Sigma-Aldrich, TCI, AK Scientific and Alfa Aesar. All reactions were performed in flame-dried disposable scintillation 3.70 mL (15 x 45 mm), 20 mL (28 x 61 mm), or 30 mL (25 x 95 mm) glass vials under nitrogen atmosphere. 1,1’-sulfonyldiimidazole (SDI) was prepared to synthesize sulfuryl fluoride (SO$_2$F$_2$) following the procedure reported by De Borggraeve.$^1$ Screw caps and PTFE/Silicone septa (13 mm x 0.060” and 22 mm x 0.060”) were from Chemglass Life Sciences. Polyethylene tubing (I.D. 1.57 mm) was from Becton Dickinson. KDS 100 Legacy Single Syringe Infusion Pump was from KD Scientific. Disposable 1 mL syringes (I.D. 4.69 mm) and 3 mL Syringes (I.D. 9.65 mm) were from Norm-Ject. Disposable needles used in adding trifluoroacetic acid (TFA) were from Air-Tite.

Tetrahydrofuran (THF) was obtained from Sigma-Aldrich, dried by a solvent purification system (SPS), or distilled over sodium and benzophenone. Diethyl ether (Et$_2$O) was obtained from Sigma-Aldrich or dried by a solvent purification system (SPS).

Column chromatography was performed using SiliaFlash F60 (40-63 μm) silica from Silicycle. Thin-layer chromatography (TLC) was run on TLC Silica gel 60 F$_{254}$ aluminium sheets from Merck.

Infrared (IR) spectra were obtained using a Thermo Nicolet 4700 FT-IR spectrometer or a Perkin Elmer Frontier FT-IR. The spectra are reported in cm$^{-1}$.

High resolution mass spectra (HRMS) were recorded on either a Waters or Micromass LCT spectrometer.

NMR spectra were obtained on a Bruker AV-300 or AV-400 spectrometer. $^1$H, $^2$H, $^{13}$C, and $^{19}$F NMR chemical shifts are reported in parts per million (ppm) relative to the residual solvent peak (CDCl$_3$: $^1$H: $\delta = 7.26$ ppm, $^{13}$C: $\delta = 77.16$ ppm). $^{19}$F NMR chemical shifts were referenced to CFCl$_3$. NMR yields were determined by $^{19}$F NMR using a relaxation time of 40 seconds to complete relaxation of all fluorine nuclei. α,α,α-Trifluorotoluene (PhCF$_3$) was used as an internal standard. $^1$H and $^{19}$F multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), triplet of doublets (td), and doublet of doublet of doublets (ddd). Coupling constants (J) are reported in Hz.

**Synthesis of Grignard reagents**

**Procedure for the generation of Grignard reagents from liquid aryl halides:**

An oven-dried 25 mL three-necked round-bottom flask equipped with a reflux condenser, an addition funnel, a septum, and a stir bar, was sealed and flame-dried under vacuum. After cooling to room temperature, the round-bottom flask was placed under N$_2$ atmosphere. Mg turnings (15 mmol, 1.5 equiv) and iodine (0.01 equiv) were added under a positive pressure of N$_2$. The round-bottom flask was then sealed, evacuated and back-filled with N$_2$ three times. The round-bottom flask was heated by a heat gun to generate purple I$_2$ gas, followed by the addition of THF (10 mL). A small amount of aryl halide (10 mmol, 1.0 equiv) was added at room temperature, while the reaction was initiated by gently heating the flask with a heat gun. Once the reaction had initiated, the remaining aryl bromide was added dropwise.
Procedure for the generation of Grignard reagents from solid aryl halides:

An oven-dried 25 mL three-necked round-bottom flask equipped with a reflux condenser, two septa, and a stir bar, was sealed and flame-dried under vacuum. After cooling to room temperature, the round-bottom flask was placed under N\textsubscript{2} atmosphere. Mg turnings (15 mmol, 1.5 equiv) and iodine (0.01 equiv) were added under a positive pressure of N\textsubscript{2}. The round-bottom flask was then sealed, evacuated and back-filled with N\textsubscript{2} three times. The round-bottom flask was heated by a heat gun to generate purple I\textsubscript{2} gas, followed by the addition of THF (5 mL). A flame-dried 20 mL vial was charged with a stir bar, aryl bromide (10 mmol, 1.0 equiv), and THF (5 mL). A small amount of aryl halide solution was added at room temperature, while the reaction was initiated by gently heating the flask with a heat gun. Once the reaction had initiated, the remaining aryl bromide was added dropwise.

Procedure for the generation of Grignard reagents using Br/Mg-exchange\textsuperscript{2}:

An oven-dried 10 mL round-bottom flask equipped with a stir bar, was sealed and flame-dried under vacuum. After cooling to room temperature, the round-bottom flask was placed under N\textsubscript{2} atmosphere and charged with i-PrMgCl·LiCl (2.35 mL, 1.30 M in THF, 3.05 mmol). After aryl bromide (3 mmol, 1 equiv) was added at 0 °C, the reaction was stirring for 2 hours.

Titration of Grignard reagents

Titration method using diphenylacetic acid as the indicator:

A 3.70 mL vial with a stir bar was flame-dried under high vacuum, and then cooled to room temperature and filled with argon. To the vial was added 100 mg of diphenylacetic acid. Under argon, THF (2 mL) was added to the vial and stirred until the diphenylacetic acid was dissolved. A 1 mL syringe was flushed with argon gas three times. The Grignard reagent solution was taken up into the syringe followed by a cushion of inert gas and inserted into the vial. The solution of the Grignard reagent was added dropwise until a light blue color appeared and the total volume of solution used was recorded.

\[
Molarity \ (M) = \frac{Mass_{\text{diphenylacetic acid}}}{MW_{\text{diphenylacetic acid}} \times Volume_{\text{Grignard reagent}}}
\]

\[
MW_{\text{diphenylacetic acid}} = 212.24 \text{ g/mol}
\]

Titration method using iodine as the indicator:

A 3.70 mL vial with a stir bar was flame-dried under high vacuum, and then cooled to room temperature and filled with argon. To the vial was quickly added 100 mg of iodine. Under argon, a 0.5 M solution of LiCl in THF (2 mL) was added to the vial and stirred until the iodine was dissolved. A 1 mL syringe was flushed with argon gas three times. The Grignard reagent solution was taken up into the syringe followed by a cushion of inert gas and inserted into the vial. The solution of the Grignard reagent was added dropwise until a colorless or pale-yellow color appeared and the total volume of solution used was recorded.
Molarity (M) = \frac{Mass_{iodine}}{MW_{iodine} \cdot Volume_{Grignard \ reagent}}

MW_{iodine} = 253.81 \text{ g/mol}

Optimization of sulfonfyl fluoride A: addition of \( \text{SO}_2\text{F}_2 \) to the Grignard reagent

Table S1. Optimization of sulfonfyl fluoride formation using 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>rate of TFA addition</th>
<th>conc. (M)</th>
<th>T (°C)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Et(_2)O regular(^c)</td>
<td>one portion</td>
<td>0.1</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Et(_2)O SPS(^d)</td>
<td>one portion</td>
<td>0.1</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>THF regular(^e)</td>
<td>one portion</td>
<td>0.1</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>THF SPS(^d)</td>
<td>one portion</td>
<td>0.1</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>THF solvent still</td>
<td>one portion</td>
<td>0.1</td>
<td>23</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>THF solvent still</td>
<td>12 mL/hr</td>
<td>0.1</td>
<td>23</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.1</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>THF SPS(^d)</td>
<td>9 mL/hr</td>
<td>0.1</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>THF solvent still</td>
<td>6 mL/hr</td>
<td>0.1</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>THF solvent still</td>
<td>3 mL/hr</td>
<td>0.1</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.5</td>
<td>23</td>
<td>&lt;5</td>
</tr>
<tr>
<td>12</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.25</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.05</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.025</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.1</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.1</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>THF solvent still</td>
<td>9 mL/hr</td>
<td>0.1</td>
<td>-25</td>
<td>&lt;5</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: The reactions were run on 0.29 mmol scale of Grignard reagent 1a in 3.70 mL vials following the general procedure A. The yield was determined by \( ^{19}\text{F} \) NMR spectroscopy using trifluorotoluene as an internal standard. \(^b\) Rate of TFA addition by a syringe pump. \(^c\) Diethyl ether was from Sigma-Aldrich (anhydrous, ACS reagent, ≥99.0%). \(^d\) The solvents were obtained from a solvent purification system. \(^e\) The 1 L THF can was from OmniSolv (For HPLC, Spectrophotometry and Gas Chromatography).
**General procedure A: addition of SO$_2$F$_2$ to the Grignard reagent (Entry 7 in Table S1)**

Two 3.70 mL vials equipped with magnetic stir bars were capped with septum-fitted screw caps connected by a 15 - 20 cm polyethylene tube. Vial A was charged with 1,1′-sulfonyldiimidazole (SDI) (0.875 mmol, 3.07 equiv) and anhydrous KF (2.31 mmol, 8.18 equiv). The system was evacuated and filled with nitrogen three times. To vial B was added anhydrous THF (2.36 mL) and 4-fluorophenylmagnesium bromide (0.49 mL, 0.285 mmol, 1.0 equiv, 0.58 M in THF) dropwise by a syringe at room temperature. A 1 mL syringe filled with excess of trifluoroacetic acid (TFA) (0.5 mL, 6.53 mmol, 22.9 equiv) was inserted into vial A. The nitrogen gas inlet was then removed. The tip of the cannula in vial B was lowered through the headspace until it touched the top of the solution in vial B. The addition of TFA into vial A was initiated at a rate of 9 mL/hr by a syringe pump. The polyethylene tube in vial B was fully immersed into the solution after the first bubbles of SO$_2$F$_2$ appeared in vial B. Bubbling of SO$_2$F$_2$ continued in vial B for a few minutes. Once bubbling of SO$_2$F$_2$ subsided, into vial B was inserted an empty balloon to increase bubbling rate. When the bubbling almost stopped, the tube was removed and the mixture in vial B was stirred at room temperature for 30 minutes. An excess of deuterium oxide (D$_2$O) was used to quench the reaction mixture. Trifluorotoluene (1.0 equiv) and dichloromethane-d$_2$ (1.0 equiv) were added into vial B as internal standards. An aliquot was taken for quantitative $^2$H NMR and $^{19}$F NMR analyses.

![Figure S1. Setup for the optimization of sulfonyl fluoride used in Table S1.](image-url)
Determination of conversion in the optimization of sulfonyle fluoride synthesis

The conversion of 4-fluorophenylmagnesium bromide (1a) was determined using $^2$H NMR spectroscopy after the D$_2$O reaction quench. For a representative example, see the protocol below:

**Scheme S1** – Reaction between aryl-magnesium halide 1a and SO$_2$F$_2$

4-Fluorophenylmagnesium bromide 1a was used as the substrate in condition optimization with reactions run at 0.29 mmol scale. After running under the designated conditions, the reactions were quenched with excess deuterium oxide to give deuterated fluorobenzene. Dichloromethane-d$_2$ was used as an internal standard. Analysis of the deuterated fluorobenzene and dichloromethane-d$_2$ via $^2$H NMR spectroscopy gives the conversion of substrate.

For example, $^2$H NMR of deuterated fluorobenzene is shown below:

0.0276 g of dichloromethane-d$_2$ were added as an internal standard. The ratio of deuterated fluorobenzene and deuterium oxide integration is 0.04/2.

\[
\text{mmol of deuterated fluorobenzene} = \frac{0.0276 \text{ g}}{86.94 \text{ g/mol}} \times \frac{0.04}{2} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} = 0.0127 \text{ mmol}
\]

\[
\text{conversion} = \frac{0.285 \text{ mmol} - 0.0127 \text{ mmol}}{0.285 \text{ mmol}} \times 100\% = 95.5\%
\]

**Figure S2.** $^2$H NMR spectrum of deuterated fluorobenzene of 1a and conversion determination for entry 7 (Table S1).
Optimization of sulfonyl fluoride formation B: addition of the Grignard reagent to a SO$_2$F$_2$ solution in THF

Table S2. Headspace and SO$_2$F$_2$ optimization for the formation of 2a.

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent/reaction vessel (v/v; mL)</th>
<th>SO$_2$F$_2$ (equiv)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/4</td>
<td>3.1</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>3/20</td>
<td>3.1</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>3/20</td>
<td>4.6</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>3/20</td>
<td>6.1</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>3/20</td>
<td>7.7</td>
<td>81</td>
</tr>
</tbody>
</table>

Reaction conditions: The reactions were run on 0.29 mmol scale of Grignard reagent following the General procedure B: for sulfonyl fluoride formation using Grignard reagent and sulfuryl fluoride on a smaller scale. The yield was determined by $^{19}$F NMR spectroscopy using trifluorotoluene as an internal standard.

General procedure B: addition of the Grignard reagent to a SO$_2$F$_2$ solution in THF (Entry 5 in Table 2)

A 3.70 mL vial A and a 20 mL vial B were equipped with magnetic stir bars and capped with septum-fitted screw caps. The vials were connected by a cannula and a vacuum/nitrogen gas inlet was inserted into vial B. The system was evacuated and filled with nitrogen three times. Vial A was charged with 1,1'-sulfonyldiimidazole (SDI) (1.31 mmol, 4.61 equiv) and anhydrous KF (3.50 mmol, 12.3 equiv) and then the system was flushed with nitrogen for a few minutes. To vial B was added anhydrous THF (2.70 mL) from a solvent still. A 3 mL syringe filled with excess of trifluoroacetic acid (TFA) (0.75 mL, 9.80 mmol) was inserted into the vial A. The nitrogen gas inlet was then removed. The tip of the cannula in vial B was lowered through the headspace until it touched the top of the solution in vial B. The addition of TFA into vial A was initiated at a rate of 9 mL/hr by a syringe pump. The cannula in vial B was fully immersed into the solution after the first bubbles of SO$_2$F$_2$ appeared in vial B. Bubbling of SO$_2$F$_2$ continued in vial B for a few minutes. Once bubbling of SO$_2$F$_2$ subsided, into vial B was inserted an empty balloon to increase the bubbling rate. When the bubbling had almost stopped, the cannula was removed. Trifluorotoluene (1.0 equiv) was added into vial B as an internal standard. An aliquot was taken for quantitative $^{19}$F NMR analysis to confirm no TFA contaminant and quantify the amount of SO$_2$F$_2$. 4-Fluorophenylmagnesium bromide (0.143 mL, 0.285 mmol, 1.0 equiv, 2.0 M in THF) was added dropwise into vial B by a syringe over a few minutes. The reaction mixture was stirred at room temperature for 1 hour. An aliquot was taken for quantitative $^{19}$F NMR analysis.
Figure S3. Setup for the optimization of sulfonyl fluoride (Table S2).

**General procedure C: for sulfonyl fluoride formation using Grignard reagent and sulfuryl fluoride on a larger scale**

A 3.70 mL vial A and a 30 mL vial B were equipped with magnetic stir bars and capped with septum-fitted screw caps. The vials were connected by a cannula and a vacuum/nitrogen gas inlet was inserted into vial B. The system was evacuated and filled with nitrogen three times. Vial A was charged with 1,1'-sulfonyldiimidazole (SDI) (2.77 mmol, 4.61 equiv) and anhydrous KF (7.36 mmol, 12.3 equiv) and then the system was flushed with nitrogen for a few minutes. To Vial B was charged anhydrous THF (5.70 mL) from solvent still. A 3 mL syringe filled with excess of trifluoroacetic acid (TFA) (1.50 mL, 19.6 mmol) was inserted into the vial A. The nitrogen gas inlet was then removed. The tip of the cannula in vial B was lowered through the headspace until it touched the top of the solution in vial B. The addition of TFA into vial A was initiated at a rate of 9 mL/hr by a syringe pump. The cannula in vial B was fully immersed into the solution after the first bubbles of SO$_2$F$_2$ appeared in vial B. Bubbling of SO$_2$F$_2$ continued in vial B for a few minutes. Once bubbling of SO$_2$F$_2$ subsided, into vial B was inserted an empty balloon to increase the bubbling rate. When the bubbling almost stopped, the cannula was removed. Trifluorotoluene (1.0 equiv) was added into vial B as an internal standard. An aliquot was taken for quantitative $^{19}$F NMR analysis to check no containment of TFA and quantify the amount of SO$_2$F$_2$. 4-Fluorophenylmagnesium bromide (0.3 mL, 0.6 mmol, 1.0 equiv, 2.0 M in THF) was added dropwise into vial B by a syringe over a few minutes. The reaction mixture was stirred at room temperature for 1 hour. An aliquot was taken for quantitative $^{19}$F NMR analysis.

**Workup and purification:**

The reaction mixture was diluted with petroleum ether (20 mL), then washed with sat. aq. NH$_4$Cl (2 x 20 mL) and brine (20 mL). The organic layers were dried over Na$_2$SO$_4$, filtered and concentrated in vacuo to afford the crude product, which was purified by silica gel column chromatography (10% dichloromethane in petroleum ether as eluent). Fractions containing the desired product were combined and concentrated in vacuo to dryness.
General procedure D: for one-pot reaction of sulfonyl derivatives using sulfonyl fluoride intermediate

General procedure for the synthesis of intermediate 2a:

4-Fluorophenylsulfonyl fluoride 2a was prepared on 0.6 mmol scale according to general procedure C. The reaction mixture (vial B) was inserted a vent needle and purged with nitrogen gas for 3 minutes to remove residual SO₂F₂.

Procedure for sulfone 7a:

After the formation of 4-fluorophenylsulfonyl fluoride intermediate 2a and subsequent purging, phenylmagnesium bromide (0.24 mL, 0.6 mmol, 1.0 equiv, 2.5 M in diethyl ether) was added dropwise by a 1 mL syringe into vial B over a few minutes under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2 hours. An aliquot was taken for ¹⁹F NMR analysis.

Procedure sulfonate ester 8a:

After the formation of 4-fluorophenylsulfonyl fluoride intermediate 2a and subsequent purging, trimethyl(phenoxysilane (0.11 mL, 0.6 mmol, 1.0 equiv) and a 1 M THF solution of TBAF (0.6 mL, 0.6 mmol, 1 equiv) were added into vial B by 1 mL syringes under nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 hour. An aliquot was taken for ¹⁹F NMR analysis.

Procedure sulfonamide 9a:

After the formation of 4-fluorophenylsulfonyl fluoride intermediate 2a and subsequent purging, imidazole (0.0817g, 1.2 mmol, 2 equiv) were quickly added into vial B by open-to-air, then capped the vial. DBU (0.27 mL, 1.8 mmol, 3 equiv) and anhydrous THF (6 mL) were added into the vial B by syringes and stirred at 40 °C. (Note: a larger headspace may be required for a larger scale synthesis to avoid solvent explosion.) The reaction mixture was stirred at room temperature for 20 hours. An aliquot was taken for ¹⁹F NMR analysis.

Workup and purification:

The reaction mixture was diluted with petroleum ether (40 mL), then washed with sat. aq. NH₄Cl (2 x 40 mL) and brine (40 mL). The organic layers were dried by Na₂SO₄, filtered and concentrated in vacuo to afford the crude product, which was purified by silica gel column chromatography (10% ethyl acetate in petroleum ether as eluent). Fractions containing the desired product were combined and concentrated in vacuo to dryness.
Experimental data

4-Fluorobenzenesulfonyl fluoride (2a)

Compound 2a was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-fluorobenzenesulfonyl fluoride as a colourless liquid (83.5 mg, 78% and 82.0 mg, 77%). The spectroscopic data were consistent with those previously published.3

$^{1}$H NMR (400 MHz, Chloroform-d) δ 8.11 – 8.01 (m, 2H), 7.37 – 7.28 (m, 2H).

$^{13}$C {1H} NMR (101 MHz, Chloroform-d) δ 166.9 (d, $J = 259.8$ Hz), 131.6 (d, $J = 10.0$ Hz), 129.0 (dd, $J = 25.7$, 3.3 Hz), 117.3 (d, $J = 23.1$ Hz).

$^{19}$F NMR (377 MHz, Chloroform-d) δ 67.1, -99.0.

4-Chlorobenzenesulfonyl fluoride (2b)

Compound 2b was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-chlorobenzenesulfonyl fluoride as a white solid (67.8 mg, 58% and 70.1 mg, 60%). The spectroscopic data were consistent with those previously published.4

$^{1}$H NMR (300 MHz, Chloroform-d) δ 8.01 – 7.91 (m, 2H), 7.66 – 7.57 (m, 2H).

$^{13}$C{1H} NMR (101 MHz, Chloroform-d) δ 142.8, 131.5 (d, $J = 25.7$ Hz), 130.3, 130.0.

$^{19}$F NMR (282 MHz, Chloroform-d) δ 66.2.

3,5-Bis(trifluoromethyl)benzenesulfonyl fluoride (2c)

Compound 2c was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 3,5-bis(trifluoromethyl)benzenesulfonyl fluoride as a colorless oil (28.6 mg, 16% and 32.9 mg, 19%). The spectroscopic data were consistent with those previously published.5,6

$^{1}$H NMR (300 MHz, Chloroform-d) δ 8.47 (d, $J = 1.6$ Hz, 2H), 8.28 (s, 1H).
\( ^{13}\text{C}\{1\text{H}\}\text{NMR} \) (101 MHz, Chloroform-\( d \)) \( \delta \) 135.8 (q, \( J = 28.7 \) Hz), 134.1 (q, \( J = 35.3 \) Hz), 129.3 (dt, \( J = 7.2, 3.4 \) Hz), 129.2 – 128.7 (m), 122.1 (d, \( J = 273.9 \) Hz).

\( ^{19}\text{F NMR} \) (282 MHz, Chloroform-\( d \)) \( \delta \) 66.4, -63.4.

5,5'-sulfonylbis(1,3-bis(trifluoromethyl)benzene) (3c)

Compound 3c was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 5,5'-sulfonylbis(1,3-bis(trifluoromethyl)benzene) as a white solid (111.9 mg, 76% and 74.0 mg, 50%).

\( ^{1}\text{H NMR} \) (300 MHz, Chloroform-\( d \)) \( \delta \) 8.42 (s, 4H), 8.16 (s, 2H).

\( ^{13}\text{C}\{1\text{H}\}\text{NMR} \) (101 MHz, Chloroform-\( d \)) \( \delta \) 142.7, 133.9 (q, \( J = 34.9 \) Hz), 128.5 – 128.2 (m), 128.2 – 128.0 (m), 122.1 (d). \( ^{19}\text{F NMR} \) (282 MHz, Chloroform-\( d \)) \( \delta \) -63.3.

HRMS-EI (m/z) calculated for C\(_{16}\)H\(_{6}\)F\(_{2}\)O\(_{2}\)S: 489.98969. Found: 489.98982.

IR (cm\(^{-1}\)): 3088, 1628, 1695, 1348, 1275, 1168, 1124, 1109.

Benzenesulfonyl fluoride (2d)

Compound 2d was prepared on 0.6 mmol and 1.0 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave benzenesulfonyl fluoride as a colorless liquid (73.8 mg, 77% and 73.7 mg, 77% for 0.6 mmol scale and 120.0 mg, 75% for 1.0 mmol scale). The spectroscopic data were consistent with those previously published.\(^4\)

\( ^{1}\text{H NMR} \) (300 MHz, Chloroform-\( d \)) \( \delta \) 8.02 (d, \( J = 7.3 \) Hz, 2H), 7.79 (t, \( J = 7.6 \) Hz, 1H), 7.64 (dd, \( J = 8.5, 7.3 \) Hz, 2H).

\( ^{13}\text{C}\{1\text{H}\}\text{NMR} \) (75 MHz, Chloroform-\( d \)) \( \delta \) 135.7, 133.1 (d, \( J = 24.3 \) Hz), 129.8, 128.4.

\( ^{19}\text{F NMR} \) (282 MHz, Chloroform-\( d \)) \( \delta \) 65.5.
4-Methylbenzenesulfonfyl fluoride (2e)

Compound 2e was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-methylbenzenesulfonfyl fluoride as a white solid (59.7 mg, 57% and 56.1 mg, 54%). The spectroscopic data were consistent with those previously published.4

1H NMR (300 MHz, Chloroform-d) δ 7.92 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 2.52 (s, 3H).

13C{1H} NMR (75 MHz, Chloroform-d) δ 147.0, 130.2, 130.1, 128.5, 21.8.

19F NMR (282 MHz, Chloroform-d) δ 66.3.

3,5-Dimethylbenzenesulfonfyl fluoride (2f)

Compound 2f was prepared on 0.6 mmol scale following the general procedure. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 3,5-dimethylbenzenesulfonfyl fluoride as a white solid (86.4 mg, 77% and 79.4mg, 70%). The spectroscopic data were consistent with those previously published.7

1H NMR (300 MHz, Chloroform-d) δ 7.62 (s, 2H), 7.37 (s, 1H), 2.43 (s, 6H).

13C{1H} NMR (75 MHz, Chloroform-d) δ 140.0, 137.3, 132.7 (d, J = 23.2 Hz), 125.8, 21.1.

19F NMR (282 MHz, Chloroform-d) δ 65.3.

2-Methylbenzenesulfonfyl fluoride (2g)

Compound 2g was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 2-methylbenzenesulfonfyl fluoride as a colorless liquid (54.1 mg, 52% and 52.0 mg, 50%). The spectroscopic data were consistent with those previously published.8

1H NMR (400 MHz, Chloroform-d) δ 8.04 (dd, J = 7.8, 1.4 Hz, 1H), 7.63 (td, J = 7.6, 1.4 Hz, 1H), 7.43 (d, J = 7.9 Hz, 2H), 2.70 (d, J = 1.3 Hz, 3H).

13C{1H} NMR (75 MHz, Chloroform-d) δ 139.2, 135.4, 133.0, 130.2, 130.2, 126.8, 20.4.
$^{19}$F NMR (282 MHz, Chloroform-$d$) $\delta$ 59.9.

2,4,6-Trimethyl-benzenesulfonyl fluoride (2h)

![Chemical structure diagram]

Compound 2h was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 2,4,6-trimethyl-benzenesulfonlfy fluoride as a white solid (69.1 mg, 57% and 57.0 mg, 47%). The spectroscopic data were consistent with those previously published.$^3$

$^1$H NMR (400 MHz, Chloroform-$d$) $\delta$ 7.03 (s, 2H), 2.64 (d, $J$ = 1.9 Hz, 6H), 2.35 (s, 3H).

$^{13}$C{1H} NMR (101 MHz, Chloroform-$d$) $\delta$ 145.2, 140.2, 132.0 (d, $J$ = 1.4 Hz), 129.2 (d, $J$ = 20.3 Hz), 22.5 (d, $J$ = 1.9 Hz), 21.3.

$^{19}$F NMR (282 MHz, Chloroform-$d$) $\delta$ 68.2.

4-Methoxybenzenesulfonyl fluoride (2i)

![Chemical structure diagram]

Compound 2i was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-methoxybenzenesulfonyl fluoride as a colourless liquid (68.3 mg, 60% and 85.5 mg, 75%). The spectroscopic data were consistent with those previously published.$^7$

$^1$H NMR (300 MHz, Chloroform-$d$) $\delta$ 7.94 (d, $J$ = 8.9 Hz, 2H), 7.06 (d, $J$ = 8.3 Hz, 2H), 3.92 (s, 3H).

$^{13}$C{1H} NMR (75 MHz, Chloroform-$d$) $\delta$ 165.2, 130.9, 124.1 (d, $J$ = 24.6 Hz), 114.8, 55.9.

$^{19}$F NMR (282 MHz, Chloroform-$d$) $\delta$ 67.0.

4-Methoxy-2-methylbenzenesulfonyl fluoride (2j)

![Chemical structure diagram]

Compound 2j was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-methoxy-2-methylbenzenesulfonyl fluoride as a colorless liquid (92.4 mg, 75% and 78.0 mg, 64%).

$^1$H NMR (300 MHz, Chloroform-$d$) $\delta$ 7.97 (d, $J$ = 8.7 Hz, 1H), 6.92 – 6.81 (m, 2H), 3.89 (s, 3H), 2.65 (s, 3H).
\[^{13}\text{C}\{1\text{H}\} \text{ NMR}\] (101 MHz, Chloroform-d) \(\delta\) 164.8, 141.7, 132.9, 123.8 (d, \(J = 23.1\) Hz), 118.4, 111.4, 55.9, 20.7.

\[^{19}\text{F} \text{ NMR}\] (282 MHz, Chloroform-d) \(\delta\) 61.5.

HRMS-EI (m/z) calculated for C\(_8\)H\(_9\)F\(_1\)O\(_3\)S\(_1\): 204.02564. Found: 204.02618.

IR (cm\(^{-1}\)): 2945, 2849, 1597, 1568, 1488, 1388, 1326, 1251, 1202, 1177, 1061, 757, 668.

4-(Methylthio)benzenesulfonyl fluoride (2k)

![Reaction Scheme](image)

Compound 2k was prepared on 0.6 mmol scale following the general procedure. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-(methylthio)benzenesulfonyl fluoride as a white solid (69.6 mg, 56% and 87.4 mg, 71%). The spectroscopic data were consistent with those previously published.\(^9\)

\[^{1}\text{H} \text{ NMR}\] (300 MHz, Chloroform-d) \(\delta\) 7.87 (d, \(J = 8.7\) Hz, 2H), 7.37 (d, \(J = 8.5\) Hz, 2H), 2.55 (s, 3H).

\[^{13}\text{C}\{1\text{H}\} \text{ NMR}\] (75 MHz, Chloroform-d) \(\delta\) 150.3, 128.6, 128.0 (d, \(J = 24.8\) Hz), 125.4, 14.6.

\[^{19}\text{F} \text{ NMR}\] (282 MHz, Chloroform-d) \(\delta\) 66.4.

4-Phenylbenzenesulfonyl fluoride (2l)

![Reaction Scheme](image)

Compound 2l was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 4-phenylbenzenesulfonyl fluoride as a white solid (96.3 mg, 68% and 83.2 mg, 59%). The spectroscopic data were consistent with those previously published.\(^9\)

\[^{1}\text{H} \text{ NMR}\] (300 MHz, Chloroform-d) \(\delta\) 8.13 – 8.03 (m, 2H), 7.87 – 7.77 (m, 2H), 7.67 – 7.57 (m, 2H), 7.57 – 7.40 (m, 3H).

\[^{13}\text{C}\{1\text{H}\} \text{ NMR}\] (75 MHz, Chloroform-d) \(\delta\) 148.8, 138.7, 131.5 (d, \(J = 25.0\) Hz), 129.4, 129.3, 129.1, 128.3, 127.6.

\[^{19}\text{F} \text{ NMR}\] (282 MHz, Chloroform-d) \(\delta\) 66.1.
1-Naphthylensulfonyl fluoride (2m)

\[
\text{HO-SO}_2-O\text{CF}_3
\]

Compound 2m was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 1-naphthylensulfonyl fluoride as a white solid (72.7 mg, 58% and 94.9 mg, 75%). The spectroscopic data were consistent with those previously published.\(^7\)

\(^1\)H NMR (300 MHz, Chloroform-d) \(\delta\) 8.55 (dd, \(J = 8.3, 2.3\) Hz, 1H), 8.37 (d, \(J = 7.5\) Hz, 1H), 8.24 (d, \(J = 8.3\) Hz, 1H), 8.01 (d, \(J = 8.1\) Hz, 1H), 7.78 (ddd, \(J = 8.6, 6.9, 1.5\) Hz, 1H), 7.69 (ddd, \(J = 8.1, 6.9, 1.2\) Hz, 1H), 7.62 (ddd, \(J = 8.6, 7.5, 1.5\) Hz, 1H).

\(^{13}\)C\{1H\} NMR (75 MHz, Chloroform-d) \(\delta\) 136.9, 134.1, 131.1 (d, \(J = 2.1\) Hz), 129.5, 129.1 (d, \(J = 23.4\) Hz), 129.1, 128.3 (d, \(J = 0.7\) Hz), 127.7, 124.2 (d, \(J = 1.3\) Hz), 124.1 (d, \(J = 1.0\) Hz).

\(^{19}\)F NMR (282 MHz, Chloroform-d) \(\delta\) 62.2.

Methanesulfonyl fluoride (2n)

\[
\text{CH}_3\text{SO}_2\text{F}
\]

Compound 2n was prepared on 0.6 mmol scale following the general procedure C. The crude product was obtained (48% and 48%) based on quantitative \(^{19}\)F NMR using trifluorotoluene as the internal standard. The spectroscopic data were consistent with those previously published.\(^10\)

\(^{19}\)F NMR (282 MHz, Chloroform-d) \(\delta\) 60.6.

1-Octanesulfonyl fluoride (2o)

\[
\text{HO-SO}_2-O\text{CF}_3
\]

Compound 2o was prepared on 0.6 mmol scale following the general procedure. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 1-octanesulfonyl fluoride as a colorless liquid (69.3 mg, 59% and 81.1 mg, 69%). The spectroscopic data were consistent with those previously published.\(^3,11\)

\(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 3.42 – 3.33 (m, 2H), 2.03 – 1.91 (m, 2H), 1.49 (q, \(J = 7.2\) Hz, 2H), 1.41 – 1.23 (m, 8H), 0.91 (dq, \(J = 7.3, 3.3\) Hz, 3H).

\(^{13}\)C\{1H\} NMR (101 MHz, Chloroform-d) \(\delta\) 50.9 (d, \(J = 16.0\) Hz), 31.6, 29.7 (d, \(J = 8.6\) Hz), 28.8 (d, \(J = 4.9\) Hz), 27.9, 23.4, 22.6, 14.0.
\textbf{19F NMR} (377 MHz, Chloroform-\textit{d}) \( \delta \) 53.5 (t, \( J = 4.3 \) Hz).

\textbf{Thiophene-2-sulfonyl fluoride (6a)}

\[
\begin{array}{c}
\text{5a} \quad \text{MgBr} \quad \text{SO}_2\text{F}_2, \text{THF, 23 °C} \\
\rightarrow \\
\text{6a}
\end{array}
\]

Compound 6a was prepared on 0.6 mmol scale following the general procedure. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave thiophene-2-sulfonyl fluoride as a yellow liquid (60.5 mg, 61% and 56.2 mg, 56%). The spectroscopic data were consistent with those previously published.\(^4\)

\textbf{1H NMR} (300 MHz, Chloroform-\textit{d}) \( \delta \) 7.93 (d, \( J = 3.9 \) Hz, 1H), 7.88 (d, \( J = 5.0 \) Hz, 1H), 7.24 (t, \( J = 4.1 \) Hz, 1H).

\textbf{13C\{1H\} NMR} (101 MHz, Chloroform-\textit{d}) \( \delta \) 137.0, 136.6 (d, \( J = 2.1 \) Hz), 131.7 (d, \( J = 31.2 \) Hz), 128.3.

\textbf{19F NMR} (282 MHz, Chloroform-\textit{d}) \( \delta \) 71.3.

\textbf{5-Methylthiophene-2-sulfonyl fluoride (6b)}

\[
\begin{array}{c}
\text{5b} \quad \text{MgBr} \quad \text{SO}_2\text{F}_2, \text{THF, 23 °C} \\
\rightarrow \\
\text{6b}
\end{array}
\]

Compound 6b was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 5-methylthiophene-2-sulfonyl fluoride as a yellow liquid (65.8 mg, 61% and 64.8 mg, 60%).

\textbf{1H NMR} (400 MHz, Chloroform-\textit{d}) \( \delta \) 7.74 (d, \( J = 2.6 \) Hz, 1H), 6.90 (d, \( J = 3.9 \) Hz, 1H), 2.62 (s, 3H).

\textbf{13C\{1H\} NMR} (101 MHz, Chloroform-\textit{d}) \( \delta \) 153.1, 137.5, 128.1 (d, \( J = 30.5 \) Hz), 126.8, 16.0.

\textbf{19F NMR} (282 MHz, Chloroform-\textit{d}) \( \delta \) 71.2.

\textbf{HRMS-EI} (m/z) calculated for C\(_5\)H\(_5\)F\(_2\)O\(_2\)S\(_2\): 179.97150. Found: 179.97089.

\textbf{IR (cm\(^{-1}\))}: 3103, 2928, 2856, 1407, 1202.

\textbf{3-Methylthiophene-2-sulfonyl fluoride (6c)}

\[
\begin{array}{c}
\text{5c} \quad \text{MgBr} \quad \text{SO}_2\text{F}_2, \text{THF, 23 °C} \\
\rightarrow \\
\text{6c}
\end{array}
\]

Compound 6c was prepared on 0.6 mmol scale following the general procedure. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 3-methylthiophene-2-sulfonyl fluoride as a yellow liquid (54.7 mg, 51% and 47.3 mg, 44%).

\textbf{1H NMR} (400 MHz, Chloroform-\textit{d}) \( \delta \) 7.69 (d, \( J = 5.1 \) Hz, 1H), 7.05 (d, \( J = 5.0 \) Hz, 1H), 2.57 (s, 3H).
$^{13}$C$\{1H\}$ NMR (101 MHz, Chloroform-$d$) δ 148.2, 134.0 (d, $J = 2.1$ Hz), 132.2, 125.8 (d, $J = 29.2$ Hz), 15.2.

$^{19}$F NMR (377 MHz, Chloroform-$d$) δ 70.5.

HRMS-EI (m/z) calculated for C$_5$H$_5$F$_1$O$_2$S$_2$: 179.97150. Found: 179.97177.

IR (cm$^{-1}$): 3114, 2965, 2928, 2853, 1527, 1406, 1376, 1201, 1108.

3-Octylthiophene-2-sulfonyl fluoride (6d)

Compound 6d was prepared on 0.6 mmol scale following the general procedure. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 3-octylthiophene-2-sulfonyl fluoride as a yellow liquid (51.4 mg, 31% and 54.2 mg, 32%).

$^1$H NMR (300 MHz, Chloroform-$d$) δ 7.70 (d, $J = 5.1$ Hz, 1H), 7.09 (d, $J = 5.1$ Hz, 1H), 3.00–2.89 (m, 2H), 1.66 (p, $J = 7.4$ Hz, 2H), 1.42–1.20 (m, 10H), 0.93–0.83 (m, 3H).

$^{13}$C$\{1H\}$ NMR (75 MHz, Chloroform-$d$) δ 153.4, 134.2 (d, $J = 2.0$ Hz), 131.1, 125.4 (d, $J = 28.9$ Hz), 31.9, 30.3, 29.4, 29.4, 29.3, 29.2, 22.8, 14.2.

$^{19}$F NMR (282 MHz, Chloroform-$d$) δ 71.0.

HRMS-EI (m/z) calculated for C$_{12}$H$_{19}$F$_1$O$_2$S$_2$: 278.08105. Found: 278.08174.

IR (cm$^{-1}$): 3116, 3099, 1516, 1417, 1401, 1318, 1214, 1203.

5-Chlorothiophene-2-sulfonyl fluoride (6e)

Compound 6e was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave 5-chlorothiophene-2-sulfonyl fluoride as a yellow liquid (55.3 mg, 46% and 58.9 mg, 49%).

$^1$H NMR (300 MHz, Chloroform-$d$) δ 7.73 (dd, $J = 4.2$, 1.2 Hz, 1H), 7.08 (dd, $J = 4.2$, 0.9 Hz, 1H).

$^{13}$C$\{1H\}$ NMR (75 MHz, Chloroform-$d$) δ 153.4, 134.2 (d, $J = 2.4$ Hz), 136.7, 129.2 (d, $J = 31.9$ Hz), 127.7.

$^{19}$F NMR (282 MHz, Chloroform-$d$) δ 71.1.

HRMS-EI (m/z) calculated for C$_4$H$_2$Cl$_1$F$_1$O$_2$S$_2$: 199.91688. Found: 199.91786.

IR (cm$^{-1}$): 3110, 3099, 1516, 1417, 1401, 1318, 1214, 1203.
Benzo[b]thiophene-3-sulfonyl fluoride (6f)

\[
\text{MgBr} \quad \text{SO}_2\text{F}_2, \text{THF}, 23 \degree C \quad \rightarrow \quad \text{6f}
\]

Compound 6f was prepared on 0.6 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% dichloromethane in petroleum ether as eluent) to leave benzo[b]thiophene-3-sulfonyl fluoride as a yellow liquid (70.1 mg, 54% and 58.0 mg, 45%).

\[\text{H NMR} (300 MHz, Chloroform-\text{d}) \delta 8.54 \ (d, J = 1.4 \ Hz, 1H), 8.21 \ (d, J = 8.3 \ Hz, 1H), 8.02 - 7.86 \ (m, 1H), 7.66 - 7.45 \ (m, 2H).\]

\[\text{C{1H} NMR} (101 MHz, Chloroform-\text{d}) \delta 140.0, 139.2 \ (d, J = 2.7 \ Hz), 133.2, 129.7, 126.8 \ (d, J = 8.1 \ Hz), 125.3 \ (d, J = 8.6 \ Hz), 123.1 \ (d, J = 8.7 \ Hz), 122.8 \ (d, J = 30.0 \ Hz).\]

\[\text{F NMR} (282 MHz, Chloroform-\text{d}) \delta 63.6.\]

\[\text{HRMS-EI} \ (m/z) \text{ calculated for C}_{8}\text{H}_{5}\text{F}_{1}\text{O}_{2}\text{S}_{2}: 215.97150. \text{Found:} 215.97143.\]

\[\text{IR} \ (\text{cm}^{-1}): 3106, 3068, 1458, 1405, 1376, 1263, 1263, 1200.\]

3-Pyridinesulfonyl fluoride (6g)

\[
\text{MgClCH}_2\text{Li} \quad \text{SO}_2\text{F}_2, \text{THF}, 23 \degree C \quad \rightarrow \quad \text{6g}
\]

Compound 6g was prepared on 0.6 mmol following the general procedure C. The crude product was purified by column chromatography on silica (100% dichloromethane as eluent) to leave 3-pyridinesulfonyl fluoride as a yellow liquid (43.0 mg, 45% and 40.6 mg, 42%). The spectroscopic data were consistent with those previously published.\(^6\)

\[\text{H NMR} (300 MHz, Chloroform-\text{d}) \delta 9.25 - 9.20 \ (m, 4H), 9.00 \ (dd, J = 4.9, 1.6 \ Hz, 4H), 8.30 \ (ddd, J = 8.2, 2.4, 1.6 \ Hz, 4H), 7.61 \ (ddt, J = 8.2, 4.9, 0.8 \ Hz, 4H).\]

\[\text{C{1H} NMR} (75 MHz, Chloroform-\text{d}) \delta 156.1, 149.1, 136.2, 130.4 \ (d, J = 25.6 \ Hz), 124.3.\]

\[\text{F NMR} (282 MHz, Chloroform-\text{d}) \delta 67.6.\]

Thiazole-2-sulfonyl fluoride (6h)

\[
\text{MgClCH}_2\text{Li} \quad \text{SO}_2\text{F}_2, \text{THF}, 23 \degree C \quad \rightarrow \quad \text{6h}
\]

Compound 6h was prepared on 0.6 mmol and 1.0 mmol scale following the general procedure C. The crude product was purified by column chromatography on silica (10% ethyl acetate in petroleum ether...
as eluent) to leave thiazole-2-sulfonyl fluoride as a yellow liquid (51.7 mg, 52% and 62.6 mg, 62% for 0.6 mmol scale and 88.2 mg, 53% for 1.0 mmol scale).

$^1$H NMR (400 MHz, Chloroform-$d$) $\delta$ 8.19 (d, $J = 3.0$ Hz, 2H), 7.94 (d, $J = 3.0$ Hz, 2H).

$^{13}$C($^1$H) NMR (101 MHz, Chloroform-$d$) $\delta$ 156.0 (d, $J = 38.5$ Hz), 145.8 (d, $J = 2.3$ Hz), 128.3 (d, $J = 0.9$ Hz).

$^{19}$F NMR (282 MHz, Chloroform-$d$) $\delta$ -63.9.

HRMS-EI (m/z) calculated for C$_3$H$_2$F$_1$N$_1$O$_2$S$_2$: 166.95110. Found: 166.95087.

IR (cm$^{-1}$): 3123, 1422, 1352, 1317, 1219.

1-Fluoro-4-(phenylsulfonyl)benzene (7a)

Compound 7a was prepared on 0.6 mmol scale following the general procedure D. The crude product was purified by column chromatography on silica (10% ethyl acetate in petroleum ether as eluent) to leave 1-fluoro-4-(phenylsulfonyl)benzene as a white solid (110.7 mg, 78% and 101.0 mg, 71%). The spectroscopic data were consistent with those previously published.\textsuperscript{12}

$^1$H NMR (400 MHz, Chloroform-$d$) $\delta$ 8.00 – 7.89 (m, 4H), 7.61 – 7.46 (m, 3H), 7.22 – 7.10 (m, 2H).

$^{13}$C($^1$H) NMR (101 MHz, Chloroform-$d$) $\delta$ 165.6 (d, $J = 255.9$ Hz), 141.6, 137.8, 133.5, 130.6 (d, $J = 9.6$ Hz), 129.5, 127.7, 116.7 (d, $J = 22.7$ Hz).

$^{19}$F NMR (282 MHz, Chloroform-$d$) $\delta$ -104.6.

Phenyl $p$-fluorobenzenesulfonate (8a)

Compound 8a was prepared on 0.6 mmol scale following the general procedure D. The crude product was purified by column chromatography on silica (10% ethyl acetate in petroleum ether as eluent) to leave 2-methylphenyl phenyl $p$-fluorobenzenesulfonate as a colorless liquid (90.5 mg, 60% and 88.8 mg, 59%). The spectroscopic data were consistent with those previously published.\textsuperscript{13, 14}

$^1$H NMR (300 MHz, Chloroform-$d$) $\delta$ 7.84 (dd, $J = 8.9$, 5.0 Hz, 2H), 7.36 – 7.26 (m, 3H), 7.19 (dd, $J = 8.9$, 8.2 Hz, 2H), 6.98 (dd, $J = 8.2$, 1.7 Hz, 2H).

$^{13}$C($^1$H) NMR (75 MHz, Chloroform-$d$) $\delta$ 165.8 (d, $J = 257.4$ Hz), 149.3, 131.2 (d, $J = 9.7$ Hz), 129.6, 127.2, 123.9, 122.2, 116.4 (d, $J = 22.7$ Hz).

$^{19}$F NMR (282 MHz, Chloroform-$d$) $\delta$ -102.5.
1-((4-Fluorophenyl)sulfonyl)-1H-imidazole (9a)

Compound 9a was prepared on 0.6 mmol scale following the general procedure D. The crude product was purified by column chromatography on silica (50% ethyl acetate in petroleum ether as eluent) to leave 1-((4-fluorophenyl)sulfonyl)-1H-imidazole as a white solid (84.5 mg, 62% and 82.4 mg, 61%). The spectroscopic data were consistent with those previously published.15

1H NMR (300 MHz, Chloroform-d) δ 8.07 – 7.93 (m, 3H), 7.31 – 7.28 (m, 1H), 7.26 – 7.21 (m, 2H), 7.11 (dd, J = 1.6, 0.8 Hz, 1H).

13C{1H} NMR (101 MHz, Chloroform-d) δ 166.4 (d, J = 259.3 Hz), 136.8, 134.1 (d, J = 3.4 Hz), 131.9, 130.5 (d, J = 9.9 Hz), 117.5, 117.5 (d, J = 23.0 Hz).

19F NMR (282 MHz, Chloroform-d) δ -100.6.
REFERENCES


2a $^1$H NMR (400 MHz, Chloroform-d)
$^{13}$C\{1H\} NMR (101 MHz, Chloroform-$d$)
$2^a\overset{\text{19F}}{\text{NMR}}$ (377 MHz, Chloroform-$d$)
$^{13}$C{H}{NMR (101 MHz, Chloroform-d)}
$^{19}$F NMR (282 MHz, Chloroform-$d$)
2c $^1$H NMR (300 MHz, Chloroform-$d$)
$^{13}$C NMR (101 MHz, Chloroform-$d$)

- D (m) 128.92
- B (q) 134.11
- A (d) 135.78
- E (d) 122.06
- C (dt) 129.34
$^{19}$F NMR (282 MHz, Chloroform-d)
3c $^1$H NMR (300 MHz, Chloroform-$d$)
$^{13}$C{H} NMR (101 MHz, Chloroform-d)
$3c^{19}\text{F NMR (282 MHz, Chloroform-$d$)}$

$\text{F}_3\text{C} \quad \text{O} \quad \text{S} \quad \text{O} \quad \text{CF}_3$

$\text{CF}_3 \quad \text{CF}_3$
2d $^1$H NMR (300 MHz, Chloroform-$d$)
2d $^{13}$C(1H) NMR (75 MHz, Chloroform-$d$)
$^{19}$F NMR (282 MHz, Chloroform-$d$)

2d $^{19}$F NMR (282 MHz, Chloroform-$d$)
$^{1}H$ NMR (300 MHz, Chloroform-$d$)
$\text{O}_2\text{S}^{-}\text{S}^{-}\text{O}$

$^{2e}^{13}\text{C}(1\text{H}) \text{ NMR (75 MHz, Chloroform-}d)$

- A (s) 147.03
- B (s) 130.24
- C (s) 130.14
- D (s) 128.46
- E (s) 21.83
$^{19}$F NMR (282 MHz, Chloroform-$d$)
$^1$H NMR (300 MHz, Chloroform-d)
$^{13}$C{\textit{1H}} NMR (75 MHz, Chloroform-d)

2f

S42
$^{19}F$ NMR (282 MHz, Chloroform-d)
2g $^1$H NMR (400 MHz, Chloroform-$d$)
2g $^{13}$C($^1$H) NMR (75 MHz, Chloroform-$d$)
$^{19}$F NMR (282 MHz, Chloroform-$d$)
$^{2h} \text{H NMR (400 MHz, Chloroform-}d\text{)}$
$^{13}$C{H} NMR (101 MHz, Chloroform-$d$)
$\text{2h}^{19}\text{F NMR (282 MHz, Chloroform-d)}}$
$^1$H NMR (300 MHz, Chloroform-$d$)
$^{13}$C{1H} NMR (75 MHz, Chloroform-$d$)

- A (s) 165.18
- B (s) 130.86
- C (d) 124.14
- D (s) 114.85
- E (s) 55.89
$^{19}\text{F NMR (282 MHz, Chloroform-}d\text{)}$
$^2$J $^1$H NMR (300 MHz, Chloroform-$d$)
$2^1\text{H}^{13}\text{C}$ NMR (101 MHz, Chloroform-$d$)
$^{2}J^{19}F$ NMR (282 MHz, Chloroform-$d$)
2k H NMR (300 MHz, Chloroform-d)

A (d) 7.87 7.37
B (d) 7.39 7.26
C (s) 2.55

1.90 t
2.29 s
3.94 s
2k $^{13}$C(1H) NMR (75 MHz, Chloroform-$d$)
$2^1$F NMR (282 MHz, Chloroform-$d$)
$\text{S}59$

$\text{H NMR (300 MHz, Chloroform-d)}$

![NMR Spectrum](image)

- A (m) 8.08
- B (m) 7.82
- C (m) 7.62
- D (m) 7.50
$^{13}$C NMR (75 MHz, Chloroform-$d$)
$^{19}$F NMR (282 MHz, Chloroform-$d$)
2m $^1$H NMR (300 MHz, Chloroform-$d$)

![NMR Spectrum](image-url)
$\mathrm{^13C\{1H\}}$ NMR (75 MHz, Chloroform-$d$)
$2^{\text{m}} ^{19}\text{F NMR (282 MHz, Chloroform-}d\text{)}$
$2n^{19}$F NMR (282 MHz, Chloroform-$d$)
2o $^1$H NMR (400 MHz, Chloroform-\textit{d})
$^{13}$C NMR (101 MHz, Chloroform-d)
$\text{O}_2\text{O}$

$\text{S}=\text{F}$

$2^\text{OF} \text{NMR (377 MHz, Chloroform-}\text{d})$
6a $^1$H NMR (300 MHz, Chloroform-$d$)
$^{13}$C NMR (101 MHz, Chloroform-$d$)

- D (s) 128.28
- B (d) 136.56
- A (s) 136.98
- C (d) 131.73
6a $^{19}$F NMR (282 MHz, Chloroform-$d$)
$^{1}H$ NMR (400 MHz, Chloroform-$d$)
$6b^{13}C\{1H\}$ NMR (101 MHz, Chloroform-$d$)

- A (s) 153.13
- B (s) 137.54
- C (d) 128.11
- D (s) 126.81
- E (s) 15.97

S73
6b $^{19}$F NMR (282 MHz, Chloroform-$d$)
$6c \text{ } ^1H \text{ NMR (400 MHz, Chloroform-}d\text{)}$
$^{13}$C NMR (101 MHz, Chloroform-d)

- A (s) 148.21
- B (d) 134.04
- C (s) 132.24
- D (d) 125.79
- E (s) 15.23
6c $^{19}$F NMR (377 MHz, Chloroform-$d$)
6d $^1$H NMR (300 MHz, Chloroform-$d$)

- A (d) 7.70
- B (d) 7.09
- C (m) 2.95
- D (p) 1.66
- G (m) 1.29

S78
$^1$H NMR (75 MHz, Chloroform-$d$)
$^{19}$F NMR (282 MHz, Chloroform-$d$)

6d $^{19}$F NMR (282 MHz, Chloroform-$d$)
6e $^1$H NMR (300 MHz, Chloroform-d)
$\text{S}\text{82}$

$6 \text{e}^{13}\text{C}(1\text{H}) \text{NMR (75 MHz, Chloroform-}d\text{)}$

![NMR Spectrum Image]
$^{19}$F NMR (282 MHz, Chloroform-$d$)
$\text{S}\text{84}$

H NMR (300 MHz, Chloroform-$d$)

$6\text{f}^1\text{H NMR (300 MHz, Chloroform-}d\text{)}$

Chemical shifts (in ppm): A (d) 8.54, B (d) 8.21, C (m) 7.94, D (m) 7.57

$\text{S84}$
$6f^{13}C\{1H\}$ NMR (101 MHz, Chloroform-$d$)
$^{19}\text{F NMR (282 MHz, Chloroform-d)}$
$^{1}$H NMR (300 MHz, Chloroform-$d$)
$6g^{13}{\text{C(1H)}}$ NMR (75 MHz, Chloroform-$d$)
6g $^{19}$F NMR (282 MHz, Chloroform-$d$)
$^1$H NMR (400 MHz, Chloroform-$d$)

6h
$^{13}$C{H} NMR (101 MHz, Chloroform-d)
$^{19}$F NMR (282 MHz, Chloroform-\textit{d})
7a $^1$H NMR (400 MHz, Chloroform-$d$)
$^{13}$C NMR (101 MHz, Chloroform-$d$)
7a $^{19}$F NMR (282 MHz, Chloroform-$d$)
8a \(^1\text{H} \text{NMR (300 MHz, Chloroform-}d\)
$^{13}$C NMR (75 MHz, Chloroform-$d$) for compound 8a
8a $^{19}$F NMR (282 MHz, Chloroform-$d$)
9a $^1$H NMR (300 MHz, Chloroform-$d$)
9a $^{13}$C(1H) NMR (101 MHz, Chloroform-d)
9a $^{19}$F NMR (282 MHz, Chloroform-$d$)