Electronic Supplementary Information

A Novel Molecular Tube Fully Modified at One End: Selective Inclusion of \textit{cis}-Unsaturated Fatty Acid Esters

Chizuru Kogame-Asahara, Shogo Ito, Hitomi Iguchi, Ai Kazama, Hajime Shigemitsu, and Toshiyuki Kida*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Contents

1. Materials and Methods S3
 1-1. Synthesis of 1 S4
 1-2. Synthesis of 2 S5
 1-3. Synthesis of 3 S5
 1-4. Spectral Data of 2 S6
 1-5. Spectral Data of 3 S8
 1-6. Determination of Association Constants by NMR Titration S9
 1-7. Experimental Procedure for Job Plots S9

2. MALDI-TOF MS Spectra of the Products Obtained by the Desilylation of 1 under Various Conditions S10

3. 1H-NMR Spectral Changes Observed for 2 upon Addition of Long-Chain Fatty Acid Esters in Methanol-d_4 and Titration Curves for Their Complex Formation S11

4. Job Plots for Complexes between 2 and Long-Chain Fatty Acid Esters in Methanol-d_4 S16

5. NOESY Spectra of Complexes between 2 and Long-Chain Fatty Acid Esters in Methanol-d_4 S18

6. 1H-NMR Spectral Changes for 2 or 3 upon Addition of Long-Chain Fatty Acid Esters in Methanol-d_4/DMSO-d_6 (7/3) and Titration Curves for Their Complex Formation S19

Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020
7. Job Plots for Complexes between 3 and Long-Chain Fatty Acid Esters in Methanol-d₄/DMSO-d₆ (7/3)

S21

8. Association Constants between 2 or 3 and Various Long-Chain Fatty Acid Methyl Esters in Methanol-d₄/
DMSO-d₆ (7/3) at 25 °C

S22

9. Reference

S22
1. Materials and Methods

Boron trifluoride diethyl ether complex and dichloromethane were purchased from Tokyo Chemical Industry Co., Ltd. (Japan). Tetrabutylammonium fluoride was purchased from Sigma-Aldrich (Japan). Tetramethylammonium fluoride and 1,4-dioxane were purchased from Wako Pure Chemical Industries, Ltd. (Japan). These reagents were used without further purification. ^1H and ^{13}C NMR spectra were recorded on a JEOL NMR system (400 MHz). The following abbreviations were used for chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. NMR signal assignments were based on additional 2D-NMR spectroscopy (e.g., COSY and HSQC). Infrared (IR) spectra were obtained with a Spectrum 100FT-IR spectrometer (Perkin Elmer). MALDI-TOF MS spectra were measured by Bruker Autoflex III. Melting points were measured with BUCHI Melting point B-545. Elemental analysis was performed with Perkin Elmer 240C. HPLC was performed using a Shimadzu Prominence HPLC system equipped with a Soft 400 ELSD detector.
1-1. Synthesis of 1

Scheme S1. Synthesis of 1.

1 was prepared according to our previously reported method.[1] The structure was confirmed by the 1H NMR spectrum.

Figure S1. 1H NMR spectrum of 1 in chloroform-\textit{d} at 25 °C.
1-2. Synthesis of 2

1 (20 mg, 4.4 µmol) and tetramethylammonium fluoride (TMAF, 8.6 mg, 92 µmol) were dissolved in 1,4-dioxane (2.0 mL). The reaction mixture was stirred for 8 h at 100 °C. After the solvent was removed in vacuo, the resulting solid was purified by silica gel column chromatography (chloroform/methanol, in a gradient 10:1 to 6:1) to give compound 2 (8.0 mg, 48% yield).

Scheme S2. Synthesis of 2.

1-3. Synthesis of 3

1 (0.1 g, 22 µmol) was dissolved in dichloromethane (10.0 mL). Into this solution, boron trifluoride diethyl ether complex (60 µL, 0.48 mmol) was added, and the reaction mixture was stirred for 4 h at room temperature. After the solvent was removed in vacuo, the resulting solid was washed with acetone (10 mL×3) and hexane (10 mL×3), and dried at 80 °C in vacuo to give compound 3 (60 mg, 91% yield).

Scheme S3. Synthesis of 3.
1-4. Spectral Data of 2

R_f 0.5 (CHCl₃/MeOH = 4/1); mp: 273 °C (decomp); 1H NMR (400 MHz, methanol-d_4): δ 0.07 (d, $J = 2.8$ Hz, 42H), δ 0.88 (s, 63H), δ 3.34-3.46 (m, 28H), δ 3.63-3.85 (m, 35H), δ 4.07 (d, $J = 8.8$ Hz, 7H), δ 4.15-4.25 (m, 28H), δ 4.93 (m, 28H), δ 5.21-5.25 (m, 28H), δ 7.14-7.18 (m, 14H), δ 7.23-7.27 (m, 7H), δ 7.66 (s, 7H); 13C NMR (100 MHz, methanol-d_4): δ -5.74, -4.47, 19.26, 26.63, 61.84, 72.90, 73.18, 75.33, 75.43, 77.44, 77.50, 83.22, 83.45, 84.34, 85.00, 103.76, 129.19, 129.64, 129.82, 131.38, 138.99, 139.01; MALDI-TOF MS: m/z = 3808 [M+Na]$^+$. Anal. Calcd for C₁₅₂H₂₈₀O₇₀Si₇•6H₂O: C, 56.15; H, 7.56. Found: C, 56.24; H, 7.59; FT-IR (cm⁻¹): 3406, 2926, 2855, 1462, 1360, 1251, 1158, 1083, 1039, 833, 777.

Figure S2. 1H NMR spectrum of 2 in methanol-d_4 at 25 °C.

Figure S3. 13C NMR spectrum of 2 in methanol-d_4 at 25 °C.
Figure S4. HPLC chromatogram of 2. Column: NACALAI TESQUE, COSMOSIL 5SL-II Packed Column (250 mm × 4.6 mm i.d.); mobile phase: chloroform/methanol = 2/1 (v/v); flow rate: 1.5 ml min\(^{-1}\); temperature: 25 °C; detector: ELSD.
1-5. Spectral Data of 3

mp: 270 °C (decomp); 1H NMR (400 MHz, DMSO-d_6): δ 3.26-3.41 (m, 28H), δ 3.58-3.70 (m, 28H), δ 4.02 (t, $J = 9.6$ Hz, 14H), δ 4.21 (d, $J = 9.6$ Hz, 14H), δ 4.63 (s, 14H), δ 4.84 (m, 14H), δ 5.04 (d, $J = 9.6$ Hz, 14H), δ 7.13 (d, $J = 8.0$ Hz, 14H), δ 7.22 (t, $J = 7.2$ Hz, 7H) , δ 7.52 (s, 7H); 13C NMR (100 MHz, DMSO-d_6): δ 59.91, 71.32, 73.58, 75.20, 81.68, 83.14, 101.42, 127.80, 128.20, 137.55; MALDI-TOF MS: $m/z = 3008 [M+Na]^+$; Anal. Caled for C$_{140}$H$_{182}$O$_{70}$$\cdot$9H$_2$O: C, 53.43; H, 6.41. Found: C, 53.43; H, 6.44; FT-IR (cm$^{-1}$): 3389, 2920, 1360, 1322, 1247, 1155, 1083, 1010, 948, 854, 754, 700.

Figure S5. 1H NMR spectrum of 3 in DMSO-d_6 at 25 °C.

Figure S6. 13C NMR spectrum of 3 in DMSO-d_6 at 25 °C.
1-6. Determination of Association Constants by NMR Titration

A solution of the host molecule (5.0 × 10^{-4} M, 0.5 mL) was titrated in a NMR tube with increasing amounts of guest stock solution (200 mM). 6 or more solutions with different host-guest concentration ratios were analyzed. Four of 1H NMR spectra obtained are shown in each figure. The titration curves (changes in the chemical shift of the host protons ($\Delta \delta$) against the guest/host concentration ratio) were analyzed by a non-linear least-squares curve fitting method to give the association constants between the hosts and the guests.

1-7. Experimental Procedure for Job Plots

Job plots were carried out by monitoring the changes in the chemical shift of the host protons ($\Delta \delta$) in a series of solutions with varying host/guest ratios but the total concentrations of the host and guest being kept constant (0.4 or 2.0 mM). The relative concentration of the host-guest complex estimated from the $\Delta \delta \cdot [\text{host}]$ value was plotted against ([host]/([host] + [guest])).
2. MALDI-TOF MS Spectra of the Products Obtained by the Desilylation of 1 under Various Conditions

![Figure S7](image1)

Figure S7. MALDI-TOF MS spectra of the products of the desilylation of 1 with TMAF in 1,4-dioxane at 100 °C for (a) 2 h and (b) 18 h.

![Figure S8](image2)

Figure S8. MALDI-TOF MS spectrum of the product of the desilylation of 1 with TBAF (14 eq.) in THF for 8 h at 60 °C.
3. **1H-NMR Spectral Changes Observed for 2 upon Addition of Long-Chain Fatty Acid Esters in Methanol-d_4 and Titration Curves for Their Complex Formation**

Figure S9. (a) 1H NMR spectral changes observed for 2 (5.0×10^{-4} M) upon addition of methyl myristate in methanol-d_4 at 25 ºC. (b) 1H NMR titration curve for complex formation between 2 and methyl myristate in methanol-d_4 at 25 ºC. The proton signal of 2 at 4.2 ppm was used for titration.

Figure S10. (a) 1H NMR spectral changes observed for 2 (5.0×10^{-4} M) upon addition of methyl palmitate in methanol-d_4 at 25 ºC. (b) 1H NMR titration curve for complex formation between 2 and methyl palmitate in methanol-d_4 at 25 ºC. The proton signal of 2 at 4.2 ppm was used for titration.
Figure S11. (a) 1H NMR spectral changes observed for 2 (5.0×10^{-4} M) upon addition of methyl stearate in methanol-d_4 at 25 ºC. (b) 1H NMR titration curve for complex formation between 2 and methyl stearate in methanol-d_4 at 25 ºC. The proton signal of 2 at 4.2 ppm was used for titration.

Figure S12. (a) 1H NMR spectral changes observed for 2 (5.0×10^{-4} M) upon addition of methyl elaidate in methanol-d_4 at 25 ºC. (b) 1H NMR titration curve for complex formation between 2 and methyl elaidate in methanol-d_4 at 25 ºC. The proton signal of 2 at 4.2 ppm was used for titration.
Figure S13. (a) 1H NMR spectral changes observed for 2 (5.0 \times 10^{-4} M) upon addition of methyl linoelaidate in methanol-d_4 at 25 °C. (b) 1H NMR titration curve for complex formation between 2 and methyl linoelaidate in methanol-d_4 at 25 °C. The proton signal of 2 at 4.2 ppm was used for titration.

Figure S14. 1H NMR titration curve for complex formation between 2 and methyl oleate in methanol-d_4 at 25 °C. The proton signal of 2 at 4.2 ppm was used for titration.
Figure S15. (a) 1H NMR spectral changes observed for 2 (5.0 × 10$^{-4}$ M) upon addition of methyl linoleate in methanol-d_4 at 25 ºC. (b) 1H NMR titration curve for complex formation between 2 and methyl linoleate in methanol-d_4 at 25 ºC. The proton signal of 2 at 4.2 ppm was used for titration.

Figure S16. (a) 1H NMR spectral changes observed for 2 (5.0 × 10$^{-4}$ M) upon addition of methyl eicosapentaenoate in methanol-d_4 at 25 ºC. (b) 1H NMR titration curve for complex formation between 2 and methyl eicosapentaenoate in methanol-d_4 at 25 ºC. The proton signal of 2 at 4.2 ppm was used for titration.
Figure S17. (a) 1H NMR spectral changes observed for 2 (5.0 × 10^{-4} M) upon addition of methyl docosahexaenoate in methanol-d_4 at 25 °C. (b) 1H NMR titration curve for complex formation between 2 and methyl docosahexaenoate in methanol-d_4 at 25 °C. The proton signal of 2 at 4.2 ppm was used for titration.
4. Job Plots for Complexes between 2 and Long-Chain Fatty Acid Esters in Methanol-d_4

Figure S18. Job plot for complex between 2 and methyl elaidate in methanol-d_4 at 25 °C.

Figure S19. Job plot for complex between 2 and methyl oleate in methanol-d_4 at 25 °C.
Figure S20. Job plot for complex between 2 and methyl linoleate in methanol-d_4 at 25 ºC.

Figure S21. Job plot for complex between 2 and methyl docosahexaenoate in methanol-d_4 at 25 ºC.
5. NOESY Spectra of Complexes between 2 and Long-Chain Fatty Acid Esters in Methanol-\(d_4\)

Figure S22. The partial 400 MHz NOESY spectrum of a complex of 2 with methyl linoleate in methanol-\(d_4\) at 25 ºC.

Figure S23. The partial 400 MHz NOESY spectrum of a complex of 2 with methyl docosahexaenoate in methanol-\(d_4\) at 25 ºC.
6. 1H-NMR Spectral Changes Observed for 2 or 3 upon Addition of Long-Chain Fatty Acid Esters in Methanol-d_4/DMSO-d_6 (7/3) and Titration Curves for Their Complex Formation

Figure S24. (a) 1H NMR spectral changes observed for 2 (5.0×10^{-4} M) upon addition of methyl elaidate in methanol-d_4/DMSO-d_6 (7/3) at 25 ºC. (b) 1H NMR titration curve observed for 2 (5.0×10^{-4} M) upon addition of methyl elaidate in methanol-d_4/DMSO-d_6 (7/3) at 25 ºC. The proton signal of 2 at 7.6-7.7 ppm was used for titration.

Figure S25. (a) 1H NMR spectral changes observed for 2 (5.0×10^{-4} M) upon addition of methyl oleate in methanol-d_4/DMSO-d_6 (7/3) at 25 ºC. (b) 1H NMR titration curve observed for 2 (5.0×10^{-4} M) upon addition of methyl oleate in methanol-d_4/DMSO-d_6 (7/3) at 25 ºC. The proton signal of 2 at 7.6-7.7 ppm was used for titration.
Figure S26. (a) 1H NMR spectral changes observed for 3 (5.0×10^{-4} M) upon addition of methyl elaidate in methanol-d_4/DMSO-d_6 (7/3) at 25 °C. (b) 1H NMR titration curve for complex formation between 3 and methyl elaidate in methanol-d_4/DMSO-d_6 (7/3) at 25 °C. The proton signal of 3 at 7.6-7.7 ppm was used for titration.

Figure S27. (a) 1H NMR spectral changes observed for 3 (5.0×10^{-4} M) upon addition of methyl oleate in methanol-d_4/DMSO-d_6 (7/3) at 25 °C. (b) 1H NMR titration curve for complex formation between 3 and methyl oleate in methanol-d_4/DMSO-d_6 (7/3) at 25 °C. The proton signal of 3 at 7.6-7.7 ppm was used for titration.
7. Job Plots for Complexes between 3 and Long-Chain Fatty Acid Esters in Methanol-d_4/DMSO-d_6 (7/3)

Figure S28. Job plot for complex between 3 and methyl elaidate in methanol-d_4/DMSO-d_6 (7/3) at 25 ºC.

Figure S29. Job plot for complex between 3 and methyl oleate in methanol-d_4/DMSO-d_6 (7/3) at 25 ºC.
8. Association Constants between 2 or 3 and Various Long-Chain Fatty Acid Methyl Esters in Methanol-\textit{d}_4/DMSO-\textit{d}_6 (7/3) at 25 °C

<table>
<thead>
<tr>
<th>entry</th>
<th>host</th>
<th>guest</th>
<th>association constant (M$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>methyl elaidate</td>
<td>$(7.4 \pm 1.7) \times 10^2$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>methyl oleate</td>
<td>$(2.1 \pm 0.69) \times 10^3$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>methyl elaidate</td>
<td>$(4.2 \pm 0.27) \times 10^3$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>methyl oleate</td>
<td>$(1.1 \pm 0.075) \times 10^3$</td>
</tr>
</tbody>
</table>

9. Reference