One-step synthesis of single-crystal wedge-shaped Ta₃N₅ nanoflake with ultrathin top end

Zhan Shi, a,c Deyu Wu, a,c Huiting Huang, a,b Taozhu Li, a,b Zhe Xu, a,b Jianyong Feng, a,b Shicheng Yan, a,b Zhigang Zou a,b,c

a. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China. E-mail: yscfei@nju.edu.cn
b. Jiangsu Key Laboratory of Artificial Functional Materials, Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China.
c. Jiangsu Key Laboratory For Nano Technology, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China.

Method

Ta foil (0.2*0.7*1.6 mm³, 99.5% purity) was washed ultrasonically with ethanol and acetone in succession for 1 h. All the alkali metal salts (purchased from Aladdin Co., China) were 99.9% purity and used without further purification. For the mixed CsI-Cs₂CO₃ flux, the CsI was 1 g and the Cs₂CO₃ varied from 2 mg to 50 mg. For other mixed fluxes, the amount alkali halide salt (including KI, RbI, RbCl, and CsCl) was fixed at 1 g, and the corresponding alkali carbonate (K₂CO₃, Rb₂CO₃, and Cs₂CO₃) was fixed at 10 mg. For all kinds of fluxes, the Ta foil and the flux were put into an Al₂O₃ crucible and annealed in a tube furnace under 400 ml min⁻¹ NH₃ flow. The temperature was ramped to 850 °C at a rate of 10 °C min⁻¹ and kept for 300 min. Then the crucible was allowed to cool down naturally. In the time-course experiment, the holding time was varied from 0 min to 60 min. When using 1 g pure CsI as flux, a pre-oxidation step was added that annealing the Ta foil in air at 550 °C for 20 min, 30 min, 45 min, and 60 min respectively.

Crystal structure of the film was determined by X-ray diffraction (XRD, Rigaku, Ultima III, Cu Kα irradiation). A scanning electron microscope (SEM, FEI Nova Nanosem 230) was used to obtain the morphology and cross-sectional images of the samples. The high resolution transmission electron microscope (HRTEM) images and selected area electron diffraction (SAED) images were taken by a transmission electron microscope (TEM, FEI TF-20). An atomic force microscope (AFM, Asylum Research, MFP-3D-SA) was utilized to give the thickness of nanoflakes. The photocurrent was measured with an electrochemical analyzer (Shanghai Chenhua, CHI 660e) in a three-electrode system of Pt counter electrode and Ag/AgCl reference electrode. The electrolyte was 1 M NaOH solution, and the light source was AM 1.5G simulated sunlight (100 mW cm⁻², oriel 92251A-1000).
Fig. S1 XRD patterns of Ta$_3$N$_5$-10 films obtained at varied growth durations.

Fig. S2 TEM images of the polyhedron scratched from 0-min Ta$_3$N$_5$-10 sample.
Fig. S3 SEM image of Ta$_3$N$_5$ films obtained using a) KI-K$_2$CO$_3$ flux; b) Rbl-Rb$_2$CO$_3$ flux; c) and d) CsCl-Cs$_2$CO$_3$ flux.

Fig. S4 a) and b) SEM images of the Ta$_3$N$_5$ using RbCl-Rb$_2$CO$_3$ flux. c) AFM of the as-synthesized nanoflake. d) Low resolution image, e) high resolution image, and f) SAED pattern of the nanoflake measured in TEM.
Fig. S5 XRD patterns of the pre-oxidized Ta foil.

Fig. S6 Cross section images of Ta$_3$N$_5$-10 of a) 60 min; b) 300 min holding time.

Fig. S7 Photocurrents of the Ta$_3$N$_5$-2 and Ta$_3$N$_5$-10 loading Ni$_{0.9}$Fe$_{0.1}$OOH co-catalyst.