Electronic Supplementary Information

Enhanced mechanofluorochromic properties of 1,4-dihydropyridine-based fluorescence molecules caused by the introduction of halogen atoms

Yating Chen, Yibin Zhou, Zhiqiang Wang, Mengzhu Wang, Wenxia Gao, Yunbing Zhou, Miaochang Liu, Xiaobo Huang* and Huayue Wu*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
E-mail: xiaobhuang@wzu.edu.cn (X. Huang), huayuewu@wzu.edu.cn
Contents:

Fig. S1 Crystal CMD-Cl: (a) Molecular packing mode. (b) The C–H···O bond and C–H···π bond in the same column. (c) The C–H···O bond and C–H···N bond between different columns.

Fig. S2 Crystal CMD-Br: (a) Molecular packing mode. (b) The C–H···O bond and C–H···π bond in the same column. (c) The C–H···O bond between different columns.
Fig. S3 CMD-F: Fluorescence spectra (a), changes in the fluorescence intensity (b), and UV-vis absorption spectra (c) in DMSO-water mixtures (10.0 μmol/L) with f_w values from 0 to 99%. Fluorescence spectra (d) in DMSO-glycerol mixtures (10.0 μmol/L) with the glycerol volume fraction from 0 to 90%. The insets in (a) show digital photographs of the fluorescence of mixtures with f_w = 0, 70, and 99%.
Fig. S4 CMD-Cl: Fluorescence spectra (a), changes in the fluorescence intensity (b), and UV-vis absorption spectra (c) in DMSO-water mixtures (10.0 μmol/L) with f_w values from 0 to 99%. Fluorescence spectra (d) in DMSO-glycerol mixtures (10.0 μmol/L) with the glycerol volume fraction from 0 to 90%. The insets in (a) show digital photographs of the fluorescence of mixtures with $f_w = 0$, 70, and 99%.
Fig. S5 CMD-Br: Fluorescence spectra (a), changes in the fluorescence intensity (b), and UV-vis absorption spectra (c) in DMSO-water mixtures (10.0 μmol/L) with \(f_w \) values from 0 to 99%. Fluorescence spectra (d) in DMSO-glycerol mixtures (10.0 μmol/L) with the glycerol volume fraction from 0 to 90%. The insets in (a) show digital photographs of the fluorescence of mixtures with \(f_w \) = 0, 50, 60, and 70%.
Fig. S6 Comparison of XRD curves of the original samples of the CMD derivatives and the simulated XRD curves obtained from the corresponding single crystals: CMD-H (a), CMD-F (b), CMD-Cl (c), and CMD-Br (d).
Fig. S7 1H NMR of compound 2 (DMSO-d_6, 500 MHz).

Fig. S8 13C NMR of compound 2 (DMSO-d_6, 125 MHz).
Fig. S9 1H NMR of compound 3a (DMSO-d_6, 500 MHz).

Fig. S10 13C NMR of compound 3a (DMSO-d_6, 125 MHz).
Fig. S11 1H NMR of compound 3b (DMSO-d_6, 500 MHz).

Fig. S12 13C NMR of compound 3b (DMSO-d_6, 125 MHz).
Fig. S13 1H NMR of compound 3c (DMSO-d_6, 500 MHz).

Fig. S14 13C NMR of compound 3c (DMSO-d_6, 125 MHz).
Fig. S15 1H NMR of compound 3d (DMSO-d_6, 500 MHz).

Fig. S16 13C NMR of compound 3d (DMSO-d_6, 125 MHz).
Fig. S17 1H NMR of CMD-H (DMSO-d_6, 500 MHz).

Fig. S18 13C NMR of CMD-H (DMSO-d_6, 125 MHz).
Fig. S19 1H NMR of CMD-F (DMSO-d_6, 400 MHz).

Fig. S20 13C NMR of CMD-F (DMSO-d_6, 125 MHz).
Fig. S21 1H NMR of CMD-Cl (DMSO-d_6, 500 MHz).

Fig. S22 13C NMR of CMD-Cl (DMSO-d_6, 125 MHz).
Fig. S23 1H NMR of CMD-Br (DMSO-d_6, 500 MHz).

Fig. S24 13C NMR of CMD-Br (DMSO-d_6, 125 MHz).