Supplementary Information

Integration of BaTiO$_3$/CoFe$_2$O$_4$ multiferroic heterostructure on GaN semiconductor†

Guanjie Li,ac Xiaomin Li,*,ab Qiuxiang Zhu,*,a Junliang Zhao,d and Xiangdong Gao,ab

a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, No. 1295 Dingxi Road, Shanghai, 200050, PR China
b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, PR China
c University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing, 100049, PR China
d Nanjing NanoArc New Materials Technology Co., Ltd., No. 37 Jiangjun Avenue, Nanjing, 211106, PR China

* Corresponding Author:
Prof. Xiaomin Li: E-mail: lixm@mail.sic.ac.cn; Tel: +86-21-52412554; Fax: +86-21-52413122
Dr. Qiuxiang Zhu: qiuxiang.zhu88@gmail.com
Fig. S1. PFM (a) phase and (b) magnitude images of BTO in BTO/CFO/GaN (n⁺) after +10 V and -10 V polarization treatment.

Fig. S1 shows the PFM (a) phase and (b) magnitude images of BTO in BTO/CFO/GaN (n⁺) after +10 V and -10 V polarization treatment. Clear phase contrast could be observed after +10 V and -10 V polarization treatment, which directly proves the ferroelectric domain switching property of BTO in BTO/CFO/GaN heterostructure.