Supporting information

Growth Behavior of Au/Cu$_{2-x}$S Hybrids and Their Plasmon-enhanced Dual-functional Catalytic Activity

Liang Maa, You-Long Chena, Xin Yanga, Hai-Xia Lia, Si-Jing Dingb, Hua-Yi Houa,

Lun Xionga, Ping-Li Qina, Xiang-Bai Chena

a Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.

b School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, Wuhan, P. R. China.
Figure S1. XRD pattern of half-shell Au/Cu$_{2-x}$S hybrids.

Figure S2. Fenton-like catalytic activity of half-shell Au/Cu$_{2-x}$S tested by changing the concentration of MB (a) and H$_2$O$_2$ (b).
Figure S3. Schematic illustration of energy band diagram of Au/Cu$_{2-x}$S hybrids.

Figure S4. High magnification TEM image of half-shell Au/Cu$_{2-x}$S hybrids.

Figure S5. Extinction spectra of core-shell Au/Cu$_{2-x}$S hybrids synthesized with cupric nitrate and cupric acetate.
Figure S6. Extinction spectra of core-shell Au/Cu$_{2-x}$S and physical mixture of Au and Cu$_{2-x}$S.

Figure S7. Low-magnification TEM image of Au/Cu$_{2-x}$S nanorods generated after 2 hrs of reaction.